20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The lived experience of patients with obesity: A systematic review and qualitative synthesis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies

          Summary Background The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies. Methods Collaborative analyses were undertaken of baseline BMI versus mortality in 57 prospective studies with 894 576 participants, mostly in western Europe and North America (61% [n=541 452] male, mean recruitment age 46 [SD 11] years, median recruitment year 1979 [IQR 1975–85], mean BMI 25 [SD 4] kg/m2). The analyses were adjusted for age, sex, smoking status, and study. To limit reverse causality, the first 5 years of follow-up were excluded, leaving 66 552 deaths of known cause during a mean of 8 (SD 6) further years of follow-up (mean age at death 67 [SD 10] years): 30 416 vascular; 2070 diabetic, renal or hepatic; 22 592 neoplastic; 3770 respiratory; 7704 other. Findings In both sexes, mortality was lowest at about 22·5–25 kg/m2. Above this range, positive associations were recorded for several specific causes and inverse associations for none, the absolute excess risks for higher BMI and smoking were roughly additive, and each 5 kg/m2 higher BMI was on average associated with about 30% higher overall mortality (hazard ratio per 5 kg/m2 [HR] 1·29 [95% CI 1·27–1·32]): 40% for vascular mortality (HR 1·41 [1·37–1·45]); 60–120% for diabetic, renal, and hepatic mortality (HRs 2·16 [1·89–2·46], 1·59 [1·27–1·99], and 1·82 [1·59–2·09], respectively); 10% for neoplastic mortality (HR 1·10 [1·06–1·15]); and 20% for respiratory and for all other mortality (HRs 1·20 [1·07–1·34] and 1·20 [1·16–1·25], respectively). Below the range 22·5–25 kg/m2, BMI was associated inversely with overall mortality, mainly because of strong inverse associations with respiratory disease and lung cancer. These inverse associations were much stronger for smokers than for non-smokers, despite cigarette consumption per smoker varying little with BMI. Interpretation Although other anthropometric measures (eg, waist circumference, waist-to-hip ratio) could well add extra information to BMI, and BMI to them, BMI is in itself a strong predictor of overall mortality both above and below the apparent optimum of about 22·5–25 kg/m2. The progressive excess mortality above this range is due mainly to vascular disease and is probably largely causal. At 30–35 kg/m2, median survival is reduced by 2–4 years; at 40–45 kg/m2, it is reduced by 8–10 years (which is comparable with the effects of smoking). The definite excess mortality below 22·5 kg/m2 is due mainly to smoking-related diseases, and is not fully explained. Funding UK Medical Research Council, British Heart Foundation, Cancer Research UK, EU BIOMED programme, US National Institute on Aging, and Clinical Trial Service Unit (Oxford, UK).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews

            Background Qualitative systematic reviews are increasing in popularity in evidence based health care. Difficulties have been reported in conducting literature searches of qualitative research using the PICO search tool. An alternative search tool, entitled SPIDER, was recently developed for more effective searching of qualitative research, but remained untested beyond its development team. Methods In this article we tested the ‘SPIDER’ search tool in a systematic narrative review of qualitative literature investigating the health care experiences of people with Multiple Sclerosis. Identical search terms were combined into the PICO or SPIDER search tool and compared across Ovid MEDLINE, Ovid EMBASE and EBSCO CINAHL Plus databases. In addition, we added to this method by comparing initial SPIDER and PICO tools to a modified version of PICO with added qualitative search terms (PICOS). Results Results showed a greater number of hits from the PICO searches, in comparison to the SPIDER searches, with greater sensitivity. SPIDER searches showed greatest specificity for every database. The modified PICO demonstrated equal or higher sensitivity than SPIDER searches, and equal or lower specificity than SPIDER searches. The modified PICO demonstrated lower sensitivity and greater specificity than PICO searches. Conclusions The recommendations for practice are therefore to use the PICO tool for a fully comprehensive search but the PICOS tool where time and resources are limited. Based on these limited findings the SPIDER tool would not be recommended due to the risk of not identifying relevant papers, but has potential due to its greater specificity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications

              Obesity is a critical risk factor for the development of type 2 diabetes (T2D), and its prevalence is rising worldwide. White adipose tissue (WAT) has a crucial role in regulating systemic energy homeostasis. Adipose tissue expands by a combination of an increase in adipocyte size (hypertrophy) and number (hyperplasia). The recruitment and differentiation of adipose precursor cells in the subcutaneous adipose tissue (SAT), rather than merely inflating the cells, would be protective from the obesity-associated metabolic complications. In metabolically unhealthy obesity, the storage capacity of SAT, the largest WAT depot, is limited, and further caloric overload leads to the fat accumulation in ectopic tissues (e.g., liver, skeletal muscle, and heart) and in the visceral adipose depots, an event commonly defined as “lipotoxicity.” Excessive ectopic lipid accumulation leads to local inflammation and insulin resistance (IR). Indeed, overnutrition triggers uncontrolled inflammatory responses in WAT, leading to chronic low-grade inflammation, therefore fostering the progression of IR. This review summarizes the current knowledge on WAT dysfunction in obesity and its associated metabolic abnormalities, such as IR. A better understanding of the mechanisms regulating adipose tissue expansion in obesity is required for the development of future therapeutic approaches in obesity-associated metabolic complications.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Obesity Reviews
                Obesity Reviews
                Wiley
                1467-7881
                1467-789X
                December 2021
                August 16 2021
                December 2021
                : 22
                : 12
                Affiliations
                [1 ]School of Education University College Dublin Dublin Ireland
                [2 ]Diabetes Complications Research Centre University College Dublin Dublin Ireland
                [3 ]University College Dublin Library Dublin Ireland
                [4 ]Obesity Action Coalition Tampa Florida USA
                Article
                10.1111/obr.13334
                34402150
                345aedd8-bcd6-4724-86d4-f5c7c09b041a
                © 2021

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article