+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influenza Virus in a Natural Host, the Mallard: Experimental Infection Data

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Wild waterfowl, particularly dabbling ducks such as mallards ( Anas platyrhynchos), are considered the main reservoir of low-pathogenic avian influenza viruses (LPAIVs). They carry viruses that may evolve and become highly pathogenic for poultry or zoonotic. Understanding the ecology of LPAIVs in these natural hosts is therefore essential. We assessed the clinical response, viral shedding and antibody production of juvenile mallards after intra-esophageal inoculation of two LPAIV subtypes previously isolated from wild congeners. Six ducks, equipped with data loggers that continually monitored body temperature, heart rate and activity, were successively inoculated with an H7N7 LPAI isolate (day 0), the same H7N7 isolate again (day 21) and an H5N2 LPAI isolate (day 35). After the first H7N7 inoculation, the ducks remained alert with no modification of heart rate or activity. However, body temperature transiently increased in four individuals, suggesting that LPAIV strains may have minor clinical effects on their natural hosts. The excretion patterns observed after both re-inoculations differed strongly from those observed after the primary H7N7 inoculation, suggesting that not only homosubtypic but also heterosubtypic immunity exist. Our study suggests that LPAI infection has minor clinically measurable effects on mallards and that mallard ducks are able to mount immunological responses protective against heterologous infections. Because the transmission dynamics of LPAIVs in wild populations is greatly influenced by individual susceptibility and herd immunity, these findings are of high importance. Our study also shows the relevance of using telemetry to monitor disease in animals.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution and ecology of influenza A viruses.

          In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii) There is evidence that most new human pandemic strains and variants have originated in southern China. (viii) There is speculation that pigs may serve as the intermediate host in genetic exchange between influenza viruses in avian and humans, but experimental evidence is lacking. (ix) Once the ecological properties of influenza viruses are understood, it may be possible to interdict the introduction of new influenza viruses into humans.
            • Record: found
            • Abstract: found
            • Article: not found

            Global patterns of influenza a virus in wild birds.

            The outbreak of highly pathogenic avian influenza of the H5N1 subtype in Asia, which has subsequently spread to Russia, the Middle East, Europe, and Africa, has put increased focus on the role of wild birds in the persistence of influenza viruses. The ecology, epidemiology, genetics, and evolution of pathogens cannot be fully understood without taking into account the ecology of their hosts. Here, we review our current knowledge on global patterns of influenza virus infections in wild birds, discuss these patterns in the context of host ecology and in particular birds' behavior, and identify some important gaps in our current knowledge.
              • Record: found
              • Abstract: found
              • Article: not found

              Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes.

              A real-time reverse transcriptase PCR (RRT-PCR) assay based on the avian influenza virus matrix gene was developed for the rapid detection of type A influenza virus. Additionally, H5 and H7 hemagglutinin subtype-specific probe sets were developed based on North American avian influenza virus sequences. The RRT-PCR assay utilizes a one-step RT-PCR protocol and fluorogenic hydrolysis type probes. The matrix gene RRT-PCR assay has a detection limit of 10 fg or approximately 1,000 copies of target RNA and can detect 0.1 50% egg infective dose of virus. The H5- and H7-specific probe sets each have a detection limit of 100 fg of target RNA or approximately 10(3) to 10(4) gene copies. The sensitivity and specificity of the real-time PCR assay were directly compared with those of the current standard for detection of influenza virus: virus isolation (VI) in embryonated chicken eggs and hemagglutinin subtyping by hemagglutination inhibition (HI) assay. The comparison was performed with 1,550 tracheal and cloacal swabs from various avian species and environmental swabs obtained from live-bird markets in New York and New Jersey. Influenza virus-specific RRT-PCR results correlated with VI results for 89% of the samples. The remaining samples were positive with only one detection method. Overall the sensitivity and specificity of the H7- and H5-specific RRT-PCR were similar to those of VI and HI.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                28 January 2010
                : 5
                : 1
                [1 ]Section for Zoonotic Ecology and Epidemiology, School of Natural Sciences, Linnaeus University, Kalmar, Sweden
                [2 ]INRA, UR 346, Saint Genès Champanelle, France
                [3 ]Aquatic Biology and Chemistry Group, Kristianstad University, Kristianstad, Sweden
                [4 ]Karolinska Institutet, Microbiology & Tumor Biology Center (MTC), Stockholm, Sweden
                [5 ]Swedish Institute for Infectious Disease Control, Stockholm, Sweden
                [6 ]National Veterinary Institute, Uppsala, Sweden
                [7 ]The Department of Biomedical Sciences and Veterinary Public Health, University of Agricultural Sciences (SLU), Uppsala, Sweden
                [8 ]Section of Infectious Diseases, Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
                Centre National de la Recherche Scientifique, France
                Author notes

                Conceived and designed the experiments: EJ GG JW AL BO. Performed the experiments: EJ GG JW NLM CB SS LS. Analyzed the data: EJ GG JW NLM CB LS JW. Contributed reagents/materials/analysis tools: EJ GG SS AL BO. Wrote the paper: EJ GG JW NLM CB SS LS JW AL BO.

                Jourdain et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Pages: 11
                Research Article
                Ecology/Population Ecology
                Immunology/Immune Response
                Virology/Animal Models of Infection
                Infectious Diseases/Viral Infections
                Public Health and Epidemiology/Infectious Diseases



                Comment on this article