1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acquisition of oral microbiota is driven by environment, not host genetics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The oral microbiota is acquired very early, but the factors shaping its acquisition are not well understood. Previous studies comparing monozygotic (MZ) and dizygotic (DZ) twins have suggested that host genetics plays a role. However, all twins share an equal portion of their parent’s genome, so this model is not informative for studying parent-to-child transmission. We used a novel study design that allowed us to directly examine the genetics of transmission by comparing the oral microbiota of biological versus adoptive mother-child dyads.

          Results

          No difference was observed in how closely oral bacterial community profiles matched for adoptive versus biological mother-child pairs, indicating little if any effect of host genetics on the fidelity of transmission. Both adopted and biologic children more closely resembled their own mother as compared to unrelated women, supporting the role of contact and environment. Mother-child strain similarity increased with the age of the child, ruling out early effects of host genetic influence that are lost over time. No effect on the fidelity of mother-child strain sharing from vaginal birth or breast feeding was seen. Analysis of extended families showed that fathers and mothers were equally similar to their children, and that cohabitating couples showed even greater strain similarity than mother-child pairs. These findings support the role of contact and shared environment, and age, but not genetics, as determinants of microbial transmission, and were consistent at both species and strain level resolutions, and across multiple oral habitats. In addition, analysis of individual species all showed similar results.

          Conclusions

          The host is clearly active in shaping the composition of the oral microbiome, since only a few of the many bacterial species in the larger environment are capable of colonizing the human oral cavity. Our findings suggest that these host mechanisms are universally shared among humans, since no effect of genetic relatedness on fidelity of microbial transmission could be detected. Instead our findings point towards contact and shared environment being the driving factors of microbial transmission, with a unique combination of these factors ultimately shaping the highly personalized human oral microbiome.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40168-020-00986-8.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          DADA2: High resolution sample inference from Illumina amplicon data

          We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.

            mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Structure, Function and Diversity of the Healthy Human Microbiome

              Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.
                Bookmark

                Author and article information

                Contributors
                mukherjee.55@osu.edu
                moyer.290@osu.edu
                steinkamp.2@osu.edu
                hashmi.2@osu.edu
                beall.3@osu.edu
                guo.1280@buckeyemail.osu.edu
                ni.304@osu.edu
                leys.1@osu.edu
                griffen.1@osu.edu
                Journal
                Microbiome
                Microbiome
                Microbiome
                BioMed Central (London )
                2049-2618
                23 February 2021
                23 February 2021
                2021
                : 9
                : 54
                Affiliations
                [1 ]GRID grid.261331.4, ISNI 0000 0001 2285 7943, College of Dentistry, , The Ohio State University, ; Columbus, OH USA
                [2 ]GRID grid.261331.4, ISNI 0000 0001 2285 7943, College of Public Health, , The Ohio State University, ; Columbus, OH USA
                Author information
                http://orcid.org/0000-0002-0648-8065
                Article
                986
                10.1186/s40168-020-00986-8
                7903647
                33622378
                34695257-dba8-452c-b6c3-1ea73371d951
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 9 March 2020
                : 24 December 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000072, National Institute of Dental and Craniofacial Research;
                Award ID: R01 DE024327
                Award ID: R01 DE024463
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                oral microbiome,acquisition,strain level,genetics,transmission,human

                Comments

                Comment on this article