14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disease characterized by the loss of motor neurons in the motor cortex, brain stem and spinal cord. Currently, there is no cure for this lethal disease. Although the mechanism underlying neuronal cell death in ALS remains elusive, growing evidence supports a crucial role of endoplasmic reticulum (ER) stress in the pathogenesis of ALS. Recent reports show that guanabenz, a novel inhibitor of eukaryotic initiation factor 2α (eIF2α) dephosphorylation, possesses anti-prion properties, attenuates ER stress and reduces paralysis and neurodegeneration in mTDP-43 Caenorhabditis elegans and Danio rerio models of ALS. However, the therapeutic potential of guanabenz for the treatment of ALS has not yet been assessed in a mouse model of ALS. In the present study, guanabenz was administered to a widely used mouse model of ALS expressing copper zinc superoxide dismutase-1 (SOD1) with a glycine to alanine mutation at position 93 (G93A). The results showed that the administration of guanabenz significantly extended the lifespan, delayed the onset of disease symptoms, improved motor performance and attenuated motor neuron loss in female SOD1 G93A mice. Moreover, western blotting results revealed that guanabenz dramatically increased the levels of phosphorylated-eIF2α (P-eIF2α) protein, without affecting total eIF2α protein levels. The results also revealed a significant decrease in the levels of the ER chaperone glucose-regulated protein 78 (BiP/Grp78) and markers of another two ER stress pathways, activating transcription factor 6α (ATF6α) and inositol-requiring enzyme 1 (IRE1). In addition, guanabenz increased the protein levels of anti-apoptotic B cell lymphoma/lewkmia-2 (Bcl-2), and down-regulated the pro-apoptotic protein levels of C/EBP homologous protein (CHOP), Bcl-2-associated X protein (BAX) and cytochrome C in SOD1 G93A mice. Our findings indicate that guanabenz may represent a novel therapeutic candidate for the treatment of ALS, a lethal human disease with an underlying mechanism involving the attenuation of ER stress and mitochondrial stress via prolonging eIF2α phosphorylation.

          Related collections

          Author and article information

          Journal
          Neuroscience
          Neuroscience
          1873-7544
          0306-4522
          Sep 26 2014
          : 277
          Affiliations
          [1 ] Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
          [2 ] Department of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang 261000, PR China.
          [3 ] Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
          [4 ] Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China. Electronic address: fenghonglin321@sina.com.
          Article
          S0306-4522(14)00267-X
          10.1016/j.neuroscience.2014.03.047
          24699224
          346a613c-566b-4c6d-a201-ef3a85fcec66
          Copyright © 2014. Published by Elsevier Ltd.
          History

          ALS,ER stress,P-eIF2α,guanabenz,neurodegeneration
          ALS, ER stress, P-eIF2α, guanabenz, neurodegeneration

          Comments

          Comment on this article