113
views
0
recommends
+1 Recommend
0 collections
    32
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The First Human Epitope Map of the Alphaviral E1 and E2 Proteins Reveals a New E2 Epitope with Significant Virus Neutralizing Activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Venezuelan equine encephalitis virus (VEEV) is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion) and E2 (binds receptor and elicits virus neutralizing antibodies). Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs). Six E2 epitopes (E2 c,d,e,f,g,h) bound VEEV-neutralizing antibody and mapped to amino acids (aa) 182–207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs) with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE.

          Methods

          We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants.

          Findings

          Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115–119. Using a 9 Å resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope.

          Conclusions

          The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration of a cocktail of F5n and Hy4 IgGs, which bind to different E2 epitopes, could provide enhanced prophylaxis or immunotherapy for VEEV, while reducing the possibility of generating possibly harmful virus neutralization-escape variants in vivo.

          Author Summary

          Although the murine immune response to Venezuelan equine encephalitis virus (VEEV) is well-characterized, little is known about the human antibody response to VEEV. In this study we used phage display technology to isolate a panel of 11 VEEV-specfic Fabs from two human donors. Seven E2-specific and four E1-specific Fabs were identified and mapped to five E2 epitopes and three E1 epitopes. Two neutralizing Fabs were isolated, E2-specific F5 and E1-specific L1A7, although the neutralizing capacity of L1A7 was 300-fold lower than F5. F5 Fab was expressed as a complete IgG1 molecule, F5 native (n) IgG. Neutralization-escape VEEV variants for F5 nIgG were isolated and their structural genes were sequenced to determine the theoretical binding site of F5. Based on this sequence analysis as well as the ability of F5 to neutralize four neutralization-escape variants of anti-VEEV murine monoclonal antibodies (mapped to E2 amino acids 182–207), a unique neutralization domain on E2 was identified and mapped to E2 amino acids 115–119.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface.

          G. Smith (1985)
          Foreign DNA fragments can be inserted into filamentous phage gene III to create a fusion protein with the foreign sequence in the middle. The fusion protein is incorporated into the virion, which retains infectivity and displays the foreign amino acids in immunologically accessible form. These "fusion phage" can be enriched more than 1000-fold over ordinary phage by affinity for antibody directed against the foreign sequence. Fusion phage may provide a simple way of cloning a gene when an antibody against the product of that gene is available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH.

            Semliki Forest virus (SFV) has been extensively studied as a model for analyzing entry of enveloped viruses into target cells. Here we describe the trace of the polypeptide chain of the SFV fusion glycoprotein, E1, derived from an electron density map at 3.5 A resolution and describe its interactions at the surface of the virus. E1 is unexpectedly similar to the flavivirus envelope protein, with three structural domains disposed in the same primary sequence arrangement. These results introduce a new class of membrane fusion proteins which display lateral interactions to induce the necessary curvature and direct budding of closed particles. The resulting surface protein lattice is primed to cause membrane fusion when exposed to the acidic environment of the endosome.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Structure of West Nile virus.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                July 2010
                13 July 2010
                : 4
                : 7
                : e739
                Affiliations
                [1 ]Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
                [2 ]Alexion Antibody Technologies, San Diego, California, United States of America
                [3 ]Division of Vector-Borne Infectious Diseases, Centers for Disease Control, Fort Collins, Colorado, United States of America
                University of Texas Medical Branch, United States of America
                Author notes
                [¤a]

                Current address: Life Technologies, Carlsbad, California, United States of America

                [¤b]

                Current address: Calmune Corporation, San Diego, California, United States of America

                Conceived and designed the experiments: ARH SF TM JTR. Performed the experiments: ARH TM. Analyzed the data: ARH SF TM JTR CDB. Contributed reagents/materials/analysis tools: SF JTR CDB. Wrote the paper: ARH JTR CDB.

                Article
                10-PNTD-RA-0858R2
                10.1371/journal.pntd.0000739
                2903468
                20644615
                3475005b-a0fb-4d68-9cdc-7cec5cc99feb
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 3 February 2010
                : 25 May 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Immunology/Immune Response
                Immunology/Immunity to Infections
                Microbiology/Immunity to Infections
                Neurological Disorders/Infectious Diseases of the Nervous System
                Virology/Emerging Viral Diseases
                Virology/Host Antiviral Responses

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article