9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bcl-2 proteins bid and bax form a network to permeabilize the mitochondria at the onset of apoptosis

      research-article
      1 , 1 , 1 , *
      Cell Death & Disease
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most critical step in the initiation of apoptosis is the activation of the Bcl-2 family of proteins to oligomerize and permeabilize the outer-mitochondrial membrane (OMM). As this step results in the irreversible release of factors that enhance cellular degradation, it is the point of no return in programmed cell death and would be an ideal therapeutic target. However, the arrangement of the Bcl-2 proteins in the OMM during permeabilization still remains unknown. It is also unclear whether the Bcl-2 protein, Bid, directly participates in the formation of the oligomers in live cells, even though it is cleaved and translocates to the OMM at the initiation of apoptosis. Therefore, we utilized confocal microscopy to measure Förster resonance energy transfer (FRET) efficiencies in live cells to determine the conformation(s) and intermolecular contacts of Bid within these Bcl-2 oligomers. We found that Bid adopts an extended conformation, which appears to be critical for its association with the mitochondrial membrane. This conformation is also important for intermolecular contacts within the Bid oligomer. More importantly for the first time, direct intermolecular contacts between Bid and Bax were observed, thereby, confirming Bid as a key component of these oligomers. Furthermore, the observed FRET efficiencies allowed us to propose an oligomeric arrangement of Bid, Bax, and possibly other members of the Bcl-2 family of proteins that form a self-propagating network that permeabilizes the OMM.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          A modular design for the clathrin- and actin-mediated endocytosis machinery.

          Endocytosis depends on an extensive network of interacting proteins that execute a series of distinct subprocesses. Previously, we used live-cell imaging of six budding-yeast proteins to define a pathway for association of receptors, adaptors, and actin during endocytic internalization. Here, we analyzed the effects of 61 deletion mutants on the dynamics of this pathway, revealing functions for 15 proteins, and we analyzed the dynamics of 8 of these proteins. Our studies provide evidence for four protein modules that cooperate to drive coat formation, membrane invagination, actin-meshwork assembly, and vesicle scission during clathrin/actin-mediated endocytosis. We found that clathrin facilitates the initiation of endocytic-site assembly but is not needed for membrane invagination or vesicle formation. Finally, we present evidence that the actin-meshwork assembly that drives membrane invagination is nucleated proximally to the plasma membrane, opposite to the orientation observed for previously studied actin-assembly-driven motility processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amphipathic helices and membrane curvature.

            Numerous data have been collected on lipid-binding amphipathic helices involved in membrane-remodeling machineries and vesicular transport. Here we describe how, with regard to lipid composition, the physicochemical features of some amphipathic helices explain their ability to recognize membrane curvature or to participate in membrane remodeling. We propose that sensing highly-curved membranes requires that the polar and hydrophobic faces of the helix do not cooperate in lipid binding. A more detailed description of the interaction between amphipathic helices and lipids is however needed; notably to explain how new helices contribute to detection of modest changes in curvature or even negative curvature. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A general amphipathic alpha-helical motif for sensing membrane curvature.

              The Golgi-associated protein ArfGAP1 has an unusual membrane-adsorbing amphipathic alpha-helix: its polar face is weakly charged, containing mainly serine and threonine residues. We show that this feature explains the specificity of ArfGAP1 for curved versus flat lipid membranes. We built an algorithm to identify other potential amphipathic alpha-helices rich in serine and threonine residues in protein databases. Among the identified sequences, we show that three act as membrane curvature sensors. In the golgin GMAP-210, the sensor may serve to trap small vesicles at the end of a long coiled coil. In Osh4p/Kes1p, which transports sterol between membranes, the sensor controls access to the sterol-binding pocket. In the nucleoporin Nup133, the sensor corresponds to an exposed loop of a beta-propeller structure. Ser/Thr-rich amphipathic helices thus define a general motif used by proteins of various functions for sensing membrane curvature.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                October 2016
                20 October 2016
                1 October 2016
                : 7
                : 10
                : e2424
                Affiliations
                [1 ]Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda 20892, MD, USA
                Author notes
                [* ]Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health , 50 South Drive, Building 50 Room 3503, Bethesda 20892-8013, MD, USA. Tel: +1 301 402 3029; Fax: +1 301 402 3405; E-mail: tjandran@ 123456nhlbi.nih.gov
                Article
                cddis2016320
                10.1038/cddis.2016.320
                5133987
                27763642
                3478d858-7f42-4538-af6c-1e725bb450be
                Copyright © 2016 The Author(s)

                Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 July 2016
                : 23 August 2016
                : 05 September 2016
                Categories
                Original Article

                Cell biology
                Cell biology

                Comments

                Comment on this article