20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends?

      , ,
      Green Chemistry
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This is a critical review on lignin valorization through oxidation reactions focusing on innovative approaches involving heterogeneous catalysis and unconventional activation methods and solvents.

          Lignin, a renewable polymer derived from the lignocellulosic biomass represents more than 20% of the total mass of the Earth's biosphere. However, 98% of lignin is burned as a source of energy in the pulp and paper industry, essentially due to its complex structure. Today, the valorization of lignin into the production of value-added chemicals represents a real challenge in terms of both sustainability and environmental protection. The present contribution aims to provide a critical discussion on the crucial choice of the starting material to study lignin valorization. Next, a comparison between the different oxidation routes investigated by chemists over the past several years is presented, with emphasis on the major difficulties encountered. The main current challenges regarding the heterogeneous catalytic oxidation of lignin and its derivatives are also highlighted. Particular focus is given to innovative strategies favoring mild reaction conditions. Finally, we provide some recommendations and routes worthy of interest in this studied area of research in order to generate value-added chemicals from lignin oxidation through the use of heterogeneous catalysts.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Energy production from biomass (Part 1): Overview of biomass.

          The use of renewable energy sources is becoming increasingly necessary, if we are to achieve the changes required to address the impacts of global warming. Biomass is the most common form of renewable energy, widely used in the third world but until recently, less so in the Western world. Latterly much attention has been focused on identifying suitable biomass species, which can provide high-energy outputs, to replace conventional fossil fuel energy sources. The type of biomass required is largely determined by the energy conversion process and the form in which the energy is required. In the first of three papers, the background to biomass production (in a European climate) and plant properties is examined. In the second paper, energy conversion technologies are reviewed, with emphasis on the production of a gaseous fuel to supplement the gas derived from the landfilling of organic wastes (landfill gas) and used in gas engines to generate electricity. The potential of a restored landfill site to act as a biomass source, providing fuel to supplement landfill gas-fuelled power stations, is examined, together with a comparison of the economics of power production from purpose-grown biomass versus waste-biomass. The third paper considers particular gasification technologies and their potential for biomass gasification.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Catalytic Transformation of Lignin for the Production of Chemicals and Fuels.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective.

              The majority of commodity plastics and materials are derived from petroleum-based chemicals, illustrating the strong dependence on products derived from non-renewable energy sources. As the most accessible, renewable form of carbon (in comparison to CO2), lignocellulosic biomass (defined as organic matter available on a renewable basis) has been acknowledged as the most logical carbon-based feedstock for a variety of materials such as biofuels and chemicals. This Review focuses on methods developed to synthesize polymers derived from lignin, monolignols, and lignin-derived chemicals. Major topics include the structure and processing of lignocellulosic biomass to lignin, polymers utilizing lignin as a macromonomer, synthesis of monomers and polymers from monolignols, and polymers from lignin-derived chemicals, such as vanillin.
                Bookmark

                Author and article information

                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2016
                2016
                : 18
                : 7
                : 1839-1854
                Article
                10.1039/C5GC03061G
                347ca82a-ce6a-4f93-a1a0-8f145615d9ac
                © 2016
                History

                Comments

                Comment on this article