46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early Growth Inhibition Is Followed by Increased Metastatic Disease with Vitamin D (Calcitriol) Treatment in the TRAMP Model of Prostate Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The active metabolite of vitamin D 3, 1,25-dihydroxyvitamin D 3 (calcitriol) has antiproliferative effects in non-aggressive prostate cancer, however, its effects in more aggressive model systems are still unclear. In these studies, effects of calcitriol and a less-calcemic vitamin D analog, QW-1624F 2-2 (QW), were tested in vivo, using the aggressive autochthonous transgenic adenocarcinoma of mouse prostate (TRAMP) model. To study prevention of androgen-stimulated prostate cancer, vehicle, calcitriol (20 µg/kg), or QW (50 µg/kg) were administered to 4 week-old TRAMP mice intraperitoneal (i.p.) 3×/week on a MWF schedule for 14 weeks. Calcitriol and QW slowed progression of prostate cancer as indicated by reduced urogenital tract (p = 0.0022, calcitriol; p = 0.0009, QW) and prostate weights (p = 0.0178, calcitriol; p = 0.0086, QW). However, only calcitriol increased expression of the pro-differentiation marker, cadherin 1 (p = 0.0086), and reduced tumor proliferation (p = 0.0467). By contrast, neither vitamin D analog had any effect on castration resistant prostate cancer in mice treated pre- or post-castration. Interestingly, although vitamin D showed inhibitory activity against primary tumors in hormone-intact mice, distant organ metastases seemed to be enhanced following treatment (p = 0.0823). Therefore, TRAMP mice were treated long-term with calcitriol to further examine effects on metastasis. Calcitriol significantly increased the number of distant organ metastases when mice were treated from 4 weeks-of-age until development of palpable tumors (20–25 weeks-of-age)(p = 0.0003). Overall, data suggest that early intervention with vitamin D in TRAMP slowed androgen-stimulated tumor progression, but prolonged treatment resulted in development of a resistant and more aggressive disease associated with increased distant organ metastasis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Convergence of Wnt, beta-catenin, and cadherin pathways.

          W Nelson (2004)
          The specification and proper arrangements of new cell types during tissue differentiation require the coordinated regulation of gene expression and precise interactions between neighboring cells. Of the many growth factors involved in these events, Wnts are particularly interesting regulators, because a key component of their signaling pathway, beta-catenin, also functions as a component of the cadherin complex, which controls cell-cell adhesion and influences cell migration. Here, we assemble evidence of possible interrelations between Wnt and other growth factor signaling, beta-catenin functions, and cadherin-mediated adhesion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model.

            Animal models that closely mimic clinical disease can be exploited to hasten the pace of translational research. To this end, we have defined windows of opportunity in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of prostate cancer as a paradigm for designing pre-clinical trials. The incidence of cancer, metastasis, and distribution of pathology were examined as a function of time in TRAMP mice. The expression of various markers of differentiation were characterized. The TRAMP model develops progressive, multifocal, and heterogeneous disease. Each lobe of the prostate progressed at a different rate. Cytokeratin 8, E-cadherin, and androgen receptor (AR) were expressed during cancer progression but levels were reduced or absent in late stage disease. A distinct epithelial to neuroendocrine (ENT) shift was observed to be a stochastic event related to prostate cancer progression in TRAMP. This study will serve as the basis for the rational design of pre-clinical studies with genetically engineered mouse models. Copyright 2003 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metastatic prostate cancer in a transgenic mouse.

              We have previously reported the development of a transgenic mouse model for prostate cancer derived from PB-Tag transgenic line 8247, henceforth designated the TRAMP (transgenic adenocarcinoma mouse prostate) model. We now describe the temporal and spatial consequences of transgene expression and report the identification and characterization of metastatic disease in the TRAMP model. TRAMP mice characteristically express the T antigen oncoprotein by 8 weeks of age and develop distinct pathology in the epithelium of the dorsolateral prostate by 10 weeks of age. Distant site metastases can be detected as early as 12 weeks of age. The common sites of metastases are the periaortic lymph nodes and lungs, with occasional metastases to the kidney, adrenal gland, and bone. By 28 weeks of age, 100% harbor metastatic prostate cancer in the lymph nodes or lungs. We have also demonstrated the loss of normal E-cadherin expression, as observed in human prostate cancer, as primary tumors become less differentiated and metastasize. The TRAMP model provides a consistent source of primary and metastatic tumors for histopathobiological and molecular analysis to further define the earliest molecular events involved in the genesis, progression, and metastasis of prostate cancer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                26 February 2014
                : 9
                : 2
                : e89555
                Affiliations
                [1 ]Department of Pharmacology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
                [2 ]Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
                University of Central Florida, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AAA JSK EK BG MTM CSJ DLT BAF. Performed the experiments: AAA JSK EK BG. Analyzed the data: AAA JSK EK BG MTM CSJ DLT BAF. Contributed reagents/materials/analysis tools: MTM CSJ DLT BAF. Wrote the paper: AAA JSK EK BG MTM CSJ DLT BAF.

                Article
                PONE-D-13-37219
                10.1371/journal.pone.0089555
                3935875
                24586868
                3481b687-746a-489d-ade1-06731d45e6a8
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 September 2013
                : 21 January 2014
                Page count
                Pages: 11
                Funding
                This work was supported by Roswell Park Cancer Institute and National Cancer Institute (NCI) grant #P30 CA016056, by NIH/NCI grant # 5R01 CA95367 (to BAF), and by the department of defense (DOD) Pre-doctoral Fellowship grant #W81XWH-05-1-0571 (to AAA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Model organisms
                Animal models
                Mouse
                Medicine
                Drugs and devices
                Drug research and development
                Nutrition
                Vitamins
                Oncology
                Basic cancer research
                Metastasis
                Cancer treatment
                Chemotherapy and drug treatment
                Cancers and neoplasms
                Genitourinary tract tumors
                Prostate cancer
                Urology
                Prostate diseases
                Prostate cancer

                Uncategorized
                Uncategorized

                Comments

                Comment on this article