26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when predicting future decomposition rates and carbon storage in peatlands.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Plant community responses to experimental warming across the tundra biome.

          Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3 degrees C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?

            Progress towards understanding the extent to which mycorrhizal fungi are involved in the mobilization of nitrogen (N) and phosphorus (P) from natural substrates is reviewed here. While mycorrhiza research has emphasized the role of the symbiosis in facilitation of capture of these nutrients in ionic form, attention has shifted since the mid-1980s to analysing the mycorrhizal fungal abilities to release N and P from the detrital materials of microbial faunal and plant origins, which are the primary sources of these elements in terrestrial ecosystems. Ericoid, and some ectomycorrhizal fungi have the potential to be directly involved in attack both on structural polymers, which may render nutrients inaccessible, and in mobilization of N and P from the organic polymers in which they are sequestered. The advantages to the plant of achieving intervention in the microbial mobilization-immobilization cycles are stressed. While the new approaches may initially lack the precision achieved in studies of readily characterized ionic forms of N and P, they do provide insights of greater ecological relevance. The results support the hypothesis that selection has favoured ericoid and ectomycorrhizal systems with well developed saprotrophic capabilities in those ecosystems characterized by retention of N and P as organic complexes in the soil. The need for further investigation of the abilities of arbuscular mycorrhizal fungi to intervene in nutrient mobilization processes is stressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of plant species on nutrient cycling.

              Plant species create positive feedbacks to patterns of nutrient cycling in natural ecosystems. For example, in nutrient-poor ecosystems, plants grow slowly, use nutrients efficiently and produce poor-quality litter that decomposes slowly and deters herbivores. /n contrast, plant species from nutrient-rich ecosystems grow rapidly, produce readily degradable litter and sustain high rates of herbivory, further enhancing rates of nutrient cycling. Plants may also create positive feedbacks to nutrient cycling because of species' differences in carbon deposition and competition with microbes for nutrients in the rhizosphere. New research is showing that species' effects can be as or more important than abiotic factors, such as climate, in controlling ecosystem fertility. Copyright © 1992. Published by Elsevier Ltd.
                Bookmark

                Author and article information

                Journal
                Ecology
                Ecology
                0012-9658
                0012-9658
                Jan 2015
                : 96
                : 1
                Article
                10.1890/14-0292.1
                26236896
                348a58b5-9c53-4a56-911f-1f3b42b9f2fa
                History

                Comments

                Comment on this article