19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An Update on Non-CB 1, Non-CB 2 Cannabinoid Related G-Protein-Coupled Receptors

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB 1), which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB 2), predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid receptor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18 and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stimulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabinoids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition, the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling under specific conditions. In this mini review, we aim to provide insight into the non-CB 1, non-CB 2 cannabinoid-related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular targets in modulating the ECS.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          The orphan receptor GPR55 is a novel cannabinoid receptor.

          The endocannabinoid system functions through two well characterized receptor systems, the CB1 and CB2 receptors. Work by a number of groups in recent years has provided evidence that the system is more complicated and additional receptor types should exist to explain ligand activity in a number of physiological processes. Cells transfected with the human cDNA for GPR55 were tested for their ability to bind and to mediate GTPgammaS binding by cannabinoid ligands. Using an antibody and peptide blocking approach, the nature of the G-protein coupling was determined and further demonstrated by measuring activity of downstream signalling pathways. We demonstrate that GPR55 binds to and is activated by the cannabinoid ligand CP55940. In addition endocannabinoids including anandamide and virodhamine activate GTPgammaS binding via GPR55 with nM potencies. Ligands such as cannabidiol and abnormal cannabidiol which exhibit no CB1 or CB2 activity and are believed to function at a novel cannabinoid receptor, also showed activity at GPR55. GPR55 couples to Galpha13 and can mediate activation of rhoA, cdc42 and rac1. These data suggest that GPR55 is a novel cannabinoid receptor, and its ligand profile with respect to CB1 and CB2 described here will permit delineation of its physiological function(s).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives.

            Most evidence indicates that, as for family C G protein-coupled receptors (GPCRs), family A GPCRs form homo- and heteromers. Homodimers seem to be a predominant species, with potential dynamic formation of higher-order oligomers, particularly tetramers. Although monomeric GPCRs can activate G proteins, the pentameric structure constituted by one GPCR homodimer and one heterotrimeric G protein may provide a main functional unit, and oligomeric entities can be viewed as multiples of dimers. It still needs to be resolved if GPCR heteromers are preferentially heterodimers or if they are mostly constituted by heteromers of homodimers. Allosteric mechanisms determine a multiplicity of possible unique pharmacological properties of GPCR homomers and heteromers. Some general mechanisms seem to apply, particularly at the level of ligand-binding properties. In the frame of the dimer-cooperativity model, the two-state dimer model provides the most practical method to analyze ligand-GPCR interactions when considering receptor homomers. In addition to ligand-binding properties, unique properties for each GPCR oligomer emerge in relation to different intrinsic efficacy of ligands for different signaling pathways (functional selectivity). This gives a rationale for the use of GPCR oligomers, and particularly heteromers, as novel targets for drug development. Herein, we review the functional and pharmacological properties of GPCR oligomers and provide some guidelines for the application of discrete direct screening and high-throughput screening approaches to the discovery of receptor-heteromer selective compounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal Structure of the Human Cannabinoid Receptor CB1.

              Cannabinoid receptor 1 (CB1) is the principal target of Δ(9)-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.
                Bookmark

                Author and article information

                Journal
                Cannabis Cannabinoid Res
                Cannabis Cannabinoid Res
                can
                Cannabis and Cannabinoid Research
                Mary Ann Liebert, Inc. (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                2378-8763
                01 October 2017
                2017
                01 October 2017
                : 2
                : 1
                : 265-273
                Affiliations
                [1]Chemistry and Biochemistry Department, UNC Greensboro , Greensboro, North Carolina.
                Author notes
                [*] [ * ]Address correspondence to: Paula Morales, PhD, Chemistry and Biochemistry Department, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC 27412, E-mail: p_morale@ 123456uncg.edu
                Article
                10.1089/can.2017.0036
                10.1089/can.2017.0036
                5665501
                29098189
                348be1ce-371f-4934-ac18-064d101a06e8
                © Paula Morales and Patricia H. Reggio 2017; Published by Mary Ann Liebert, Inc.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 3, Tables: 1, References: 136, Pages: 9
                Categories
                Mini-Review

                cannabinoid receptors,endocannabinoid system,gpcrs,orphan receptors

                Comments

                Comment on this article