6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Immunopathogenic Potential of Arcobacter butzleri – Lessons from a Meta-Analysis of Murine Infection Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Only limited information is available about the immunopathogenic properties of Arcobacter infection in vivo. Therefore, we performed a meta-analysis of published data in murine infection models to compare the pathogenic potential of Arcobacter butzleri with Campylobacter jejuni and commensal Escherichia coli as pathogenic and harmless reference bacteria, respectively.

          Methodology / Principal Findings

          Gnotobiotic IL-10 -/- mice generated by broad-spectrum antibiotic compounds were perorally infected with A. butzleri (strains CCUG 30485 or C1), C. jejuni (strain 81-176) or a commensal intestinal E. coli strain. Either strain stably colonized the murine intestines upon infection. At day 6 postinfection (p.i.), C. jejuni infected mice only displayed severe clinical sequelae such as wasting bloody diarrhea. Gross disease was accompanied by increased numbers of colonic apoptotic cells and distinct immune cell populations including macrophages and monocytes, T and B cells as well as regulatory T cells upon pathogenic infection. Whereas A. butzleri and E. coli infected mice were clinically unaffected, respective colonic immune cell numbers increased in the former, but not in the latter, and more distinctly upon A. butzleri strain CCUG 30485 as compared to C1 strain infection. Both, A. butzleri and C. jejuni induced increased secretion of pro-inflammatory cytokines such as IFN-γ, TNF, IL-6 and MCP-1 in large, but also small intestines. Remarkably, even though viable bacteria did not translocate from the intestines to extra-intestinal compartments, systemic immune responses were induced in C. jejuni, but also A. butzleri infected mice as indicated by increased respective pro-inflammatory cytokine concentrations in serum samples at day 6 p.i.

          Conclusion / Significance

          A. butzleri induce less distinct pro-inflammatory sequelae as compared to C. jejuni, but more pronounced local and systemic immune responses than commensal E. coli in a strain-dependent manner. Hence, data point towards that A. butzleri is more than a commensal in vertebrate hosts.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii.

          Oral infection of susceptible mice with Toxoplasma gondii results in Th1-type immunopathology in the ileum. We investigated gut flora changes during ileitis and determined contributions of gut bacteria to intestinal inflammation. Analysis of the intestinal microflora revealed that ileitis was accompanied by increasing bacterial load, decreasing species diversity, and bacterial translocation. Gram-negative bacteria identified as Escherichia coli and Bacteroides/Prevotella spp. accumulated in inflamed ileum at high concentrations. Prophylactic or therapeutic administration of ciprofloxacin and/or metronidazole ameliorated ileal immunopathology and reduced intestinal NO and IFN-gamma levels. Most strikingly, gnotobiotic mice in which cultivable gut bacteria were removed by quintuple antibiotic treatment did not develop ileitis after Toxoplasma gondii infection. A reduction in total numbers of lymphocytes was observed in the lamina propria of specific pathogen-free (SPF), but not gnotobiotic, mice upon development of ileitis. Relative numbers of CD4(+) T cells did not differ in naive vs infected gnotobiotic or SPF mice, but infected SPF mice showed a significant increase in the frequencies of activated CD4(+) T cells compared with gnotobiotic mice. Furthermore, recolonization with total gut flora, E. coli, or Bacteroides/Prevotella spp., but not Lactobacillus johnsonii, induced immunopathology in gnotobiotic mice. Animals recolonized with E. coli and/or total gut flora, but not L. johnsonii, showed elevated ileal NO and/or IFN-gamma levels. In conclusion, Gram-negative bacteria, i.e., E. coli, aggravate pathogen-induced intestinal Th1-type immunopathology. Thus, pathogen-induced acute ileitis may prove useful to study bacteria-host interactions in small intestinal inflammation and to test novel therapies based on modulation of gut flora.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors.

            Vulvovaginal candidiasis (VVC) is an infection caused by Candida species that affects millions of women every year. Although Candida albicans is the main cause of VVC, the identification of non-Candida albicans Candida (NCAC) species, especially Candida glabrata, as the cause of this infection, appears to be increasing. The development of VVC is usually attributed to the disturbance of the balance between Candida vaginal colonization and host environment by physiological or nonphysiological changes. Several host-related and behavioral risk factors have been proposed as predisposing factors for VVC. Host-related factors include pregnancy, hormone replacement, uncontrolled diabetes, immunosuppression, antibiotics, glucocorticoids use and genetic predispositions. Behavioral risk factors include use of oral contraceptives, intrauterine device, spermicides and condoms and some habits of hygiene, clothing and sexual practices. Despite a growing list of recognized risk factors, much remains to be elucidated as the role of host versus microorganisms, in inducing VVC and its recurrence. Thus, this review provides information about the current state of knowledge on the risk factors that predispose to VVC, also including a revision of the epidemiology and microbiology of VVC, as well as of Candida virulence factors associated with vaginal pathogenicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Novel Murine Infection Models Provide Deep Insights into the “Ménage à Trois” of Campylobacter jejuni, Microbiota and Host Innate Immunity

              Background Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen. Methodology/Principal Findings To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa) or murine (mfa) microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88−/−, TRIF−/−, TLR4−/−, and TLR9−/− mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness. Conclusion/Significance We conclude that gnotobiotic and “humanized” mice represent excellent novel C. jejuni-infection and -inflammation models and provide deep insights into the immunological and molecular interplays between C. jejuni, microbiota and innate immunity in human campylobacteriosis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                20 July 2016
                2016
                : 11
                : 7
                : e0159685
                Affiliations
                [1 ]Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
                [2 ]Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
                Fox Chase Cancer Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GG TA SB MMH. Performed the experiments: GG MMH. Analyzed the data: GG MMH. Contributed reagents/materials/analysis tools: TA. Wrote the paper: GG SB TA MMH.

                Article
                PONE-D-16-10221
                10.1371/journal.pone.0159685
                4954699
                27438014
                349036c6-36c1-44f0-8a43-566e982b9411
                © 2016 Gölz et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 March 2016
                : 5 July 2016
                Page count
                Figures: 9, Tables: 0, Pages: 18
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: SFB633
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: SFB633
                Award Recipient :
                Funded by: Bundesministerium für Bildung und Forschung (DE)
                Award ID: TP1.1
                Award Recipient :
                This work was supported by grants from the German Research Foundation (DFG) to SB and MMH (SFB633, TP A7 and B6, respectively), and from the German Federal Ministery of Education and Research (BMBF) to SB (TP1.1).
                Categories
                Research Article
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Escherichia Coli Infections
                Biology and Life Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Medicine and Health Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Research and Analysis Methods
                Model Organisms
                Animal Models
                Mouse Models
                Medicine and Health Sciences
                Pharmacology
                Drugs
                Antimicrobials
                Antibiotics
                Biology and Life Sciences
                Microbiology
                Microbial Control
                Antimicrobials
                Antibiotics
                Medicine and Health Sciences
                Gastroenterology and Hepatology
                Gastrointestinal Infections
                Biology and Life Sciences
                Immunology
                Immune Response
                Medicine and Health Sciences
                Immunology
                Immune Response
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article