2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hedgehog signaling and therapeutics in pancreatic cancer.

      Carcinogenesis
      Adenocarcinoma, etiology, Anilides, therapeutic use, Animals, Clinical Trials as Topic, Hedgehog Proteins, antagonists & inhibitors, chemistry, physiology, Humans, Neoplastic Stem Cells, drug effects, Pancreatic Neoplasms, drug therapy, Pyridines, Signal Transduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To conduct a systematic review of the role that the hedgehog signaling pathway has in pancreatic cancer tumorigenesis. PubMed search (2000-2010) and literature based references. Firstly, in 2009 a genetic analysis of pancreatic cancers found that a core set of 12 cellular signaling pathways including hedgehog were genetically altered in 67-100% of cases. Secondly, in vitro and in vivo studies of treatment with cyclopamine (a naturally occurring antagonist of the hedgehog signaling pathway component; Smoothened) has shown that inhibition of hedgehog can abrogate pancreatic cancer metastasis. Thirdly, experimental evidence has demonstrated that sonic hedgehog (Shh) is correlated with desmoplasia in pancreatic cancer. This is important because targeting the Shh pathway potentially may facilitate chemotherapeutic drug delivery as pancreatic cancers tend to have a dense fibrotic stroma that extrinsically compresses the tumor vasculature leading to a hypoperfusing intratumoral circulation. It is probable that patients with locally advanced pancreatic cancer will derive the greatest benefit from treatment with Smoothened antagonists. Fourthly, it has been found that ligand dependent activation by hedgehog occurs in the tumor stromal microenvironment in pancreatic cancer, a paracrine effect on tumorigenesis. Finally, in pancreatic cancer, cells with the CD44+CD24+ESA+ immunophenotype select a population enriched for cancer initiating stem cells. Shh is increased 46-fold in CD44+CD24+ESA+ cells compared with normal pancreatic epithelial cells. Medications that destruct pancreatic cancer initiating stem cells are a potentially novel strategy in cancer treatment. Aberrant hedgehog signaling occurs in pancreatic cancer tumorigenesis and therapeutics that target the transmembrane receptor Smoothened abrogate hedgehog signaling and may improve the outcomes of patients with pancreatic cancer.

          Related collections

          Author and article information

          Comments

          Comment on this article