Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease

The Integrative HMP (iHMP) Research Network Consortium

Cell host & microbe

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Much has been learned about the diversity and distribution of human-associated microbial communities, but we still know little about the biology of the microbiome, how it interacts with the host, and how the host responds to its resident microbiota. The Integrative Human Microbiome Project (iHMP, http://hmp2.org), the second phase of the NIH Human Microbiome Project, will study these interactions by analyzing microbiome and host activities in longitudinal studies of disease-specific cohorts and by creating integrated data sets of microbiome and host functional properties. These data sets will serve as experimental test beds to evaluate new models, methods, and analyses on the interactions of host and microbiome. Here we describe the three models of microbiome-associated human conditions, on the dynamics of preterm birth, inflammatory bowel disease, and type 2 diabetes, and their underlying hypotheses, as well as the multi-omic data types to be collected, integrated, and distributed through public repositories as a community resource.

      Related collections

      Most cited references 77

      • Record: found
      • Abstract: found
      • Article: not found

      Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

      The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (> or = 95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Structure, Function and Diversity of the Healthy Human Microbiome

        Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          An obesity-associated gut microbiome with increased capacity for energy harvest.

          The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
            Bookmark

            Author and article information

            Author notes
            [* ]Correspondence: lita.proctor@ 123456nih.gov
            Journal
            101302316
            33345
            Cell Host Microbe
            Cell Host Microbe
            Cell host & microbe
            1931-3128
            1934-6069
            1 November 2016
            10 September 2014
            15 November 2016
            : 16
            : 3
            : 276-289
            25211071 5109542 10.1016/j.chom.2014.08.014 NIHMS819958

            This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/3.0/).

            Categories
            Article

            Microbiology & Virology

            Comments

            Comment on this article