5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.

          Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H) and organic semiconductors have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material--namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)--for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V(-1) s(-1), which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6-9 cm2 V(-1) s(-1), and device characteristics are stable during repetitive bending of the TTFT sheet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An ultra-lightweight design for imperceptible plastic electronics.

            Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process.

              At present there is no ‘ideal’ thin-film transistor technology for demanding display applications, such as organic light-emitting diode displays, that allows combining the low-temperature, solution-processability offered by organic semiconductors with the high level of performance achievable with microcrystalline silicon1. N-type amorphous mixed metal oxide semiconductors, such as ternary oxides Mx1My2Oz, where M1 and M2 are metals such as In, Ga, Sn, or Zn, have recently gained momentum because of their high carrier mobility and stability2, 3 and good optical transparency, but they are mostly deposited by sputtering. So far no route is available for forming high-performance mixed oxide materials from solution at low process temperatures <250 °C. Ionic mixed metal oxides should in principle be ideal candidates for solution-processable materials because the conduction band states derived from metal s-orbitals are relatively insensitive to the presence of structural disorder and high charge carrier mobilities are achievable in amorphous structures2. Here we report the formation of amorphous metal oxide semiconducting thin-films using a ‘sol–gel on chip’ hydrolysis approach from soluble metal alkoxide precursors, which affords unprecedented high field-effect mobilities of 10 cm2 V−1 s−1, reproducible and stable turn-on voltages Von≈0 V and high operational stability at maximum process temperatures as low as 230 °C.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 17 2015
                March 17 2015
                March 17 2015
                March 02 2015
                : 112
                : 11
                : 3217-3222
                Article
                10.1073/pnas.1501548112
                25733848
                34aeb237-9c3b-4a89-869b-1238cd5b69bb
                © 2015
                History

                Comments

                Comment on this article