3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FOXP2 regulates thyroid cancer cell proliferation and apoptosis via transcriptional activation of RPS6KA6

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transcription factor, forkhead box P2 (FOXP2) has tumor-suppressive effects in several types of cancer. However, the regulatory role and underlying mechanism of FOXP2 in thyroid cancer (THCA) is not completely understood. In the present study, the mRNA expression levels of FOXP2 and ribosomal protein S6 kinase A6 (RPS6KA6) were evaluated using the GEPIA database and THCA cell lines. The association between FOXP2 and RPS6KA6 was analyzed using the LinkedOmics, and GEPIA databases. Then, the binding sites of FOXP2 and the RPS6KA6 promotor was predicted using the JASPAR database, and verified using a dual-luciferase reporter assay and chromatin immunoprecipitation. In addition, functional assays investigating FOXP2 and RPS6KA6 were conducted in the TPC-1 cell line. The data showed that FOXP2 and RPS6KA6 mRNA expression levels were decreased in the THCA tissues, and cell lines. Overexpression of FOXP2 inhibited cell proliferation and promoted apoptosis in the THCA cell lines. Furthermore, RPS6KA6 mRNA expression levels were reduced in THCA and were correlated with FOXP2 expression level. Mechanistic studies revealed that FOXP2 binds directly to the promotor region of RPS6KA6 and modulated the expression level of RPS6KA6 transcriptionally. In addition, rescue experiments showed that knockdown of RPS6KA6 expression reversed the effects of FOXP2 overexpression on THCA cell proliferation and apoptosis, and the regulation of FOXP2/RPS6KA6 may be associated with the PI3K/AKT pathway. In summary, FOXP2 was associated with the proliferation and apoptosis of human THCA cells via the transcriptional activation of RPS6KA6. The FOXP2/RPS6KA6 axis could be a promising target for the treatment of THCA.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thyroid cancer

            Thyroid cancer is the fifth most common cancer in women in the USA, and an estimated over 62 000 new cases occurred in men and women in 2015. The incidence continues to rise worldwide. Differentiated thyroid cancer is the most frequent subtype of thyroid cancer and in most patients the standard treatment (surgery followed by either radioactive iodine or observation) is effective. Patients with other, more rare subtypes of thyroid cancer-medullary and anaplastic-are ideally treated by physicians with experience managing these malignancies. Targeted treatments that are approved for differentiated and medullary thyroid cancers have prolonged progression-free survival, but these drugs are not curative and therefore are reserved for patients with progressive or symptomatic disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Targeting transcription factors in cancer — from undruggable to reality

                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                June 2022
                09 May 2022
                09 May 2022
                : 23
                : 6
                : 434
                Affiliations
                Department of Thyroid and Breast Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
                Author notes
                Correspondence to: Dr Feibiao Yang, Department of Thyroid and Breast Surgery, The Affiliated People's Hospital of Ningbo University, 251 Baizhang East Road, Ningbo, Zhejiang 315040, P.R. China fiebiaoyy@ 123456163.com
                Article
                ETM-23-6-11361
                10.3892/etm.2022.11361
                9121208
                35607372
                34b5eeb6-e08c-4c0c-9d58-5d63278c1d09
                Copyright: © Yang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 19 October 2021
                : 04 January 2022
                Funding
                Funding: No funding was received.
                Categories
                Articles

                Medicine
                forkhead box p2,ribosomal protein s6 kinase a6,thyroid cancer,pi3k/akt,transcription factor

                Comments

                Comment on this article