Blog
About

59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cancer statistics, 2018.

      CA: a cancer journal for clinicians

      American Cancer Society

      death rates, incidence, mortality, cancer cases, cancer statistics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.

          Related collections

          Most cited references 53

          • Record: found
          • Abstract: found
          • Article: not found

          Reduced lung-cancer mortality with low-dose computed tomographic screening.

            (2011)
          The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement.

             V Moyer,  Jarrett Moyer,   (2012)
            Update of the 2008 U.S. Preventive Services Task Force (USPSTF) recommendation statement on screening for prostate cancer. The USPSTF reviewed new evidence on the benefits and harms of prostate-specific antigen (PSA)-based screening for prostate cancer, as well as the benefits and harms of treatment of localized prostate cancer. The USPSTF recommends against PSA-based screening for prostate cancer (grade D recommendation).This recommendation applies to men in the general U.S. population, regardless of age. This recommendation does not include the use of the PSA test for surveillance after diagnosis or treatment of prostate cancer; the use of the PSA test for this indication is outside the scope of the USPSTF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates.

              The American Cancer Society, the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR) collaborate annually to provide updated information regarding cancer occurrence and trends in the United States. This year's report includes trends in colorectal cancer (CRC) incidence and death rates and highlights the use of microsimulation modeling as a tool for interpreting past trends and projecting future trends to assist in cancer control planning and policy decisions. Information regarding invasive cancers was obtained from the NCI, CDC, and NAACCR; and information on deaths was obtained from the CDC's National Center for Health Statistics. Annual percentage changes in the age-standardized incidence and death rates (based on the year 2000 US population standard) for all cancers combined and for the top 15 cancers were estimated by joinpoint analysis of long-term trends (1975-2006) and for short-term fixed-interval trends (1997-2006). All statistical tests were 2-sided. Both incidence and death rates from all cancers combined significantly declined (P < .05) in the most recent time period for men and women overall and for most racial and ethnic populations. These decreases were driven largely by declines in both incidence and death rates for the 3 most common cancers in men (ie, lung and prostate cancers and CRC) and for 2 of the 3 leading cancers in women (ie, breast cancer and CRC). The long-term trends for lung cancer mortality in women had smaller and smaller increases until 2003, when there was a change to a nonsignificant decline. Microsimulation modeling demonstrates that declines in CRC death rates are consistent with a relatively large contribution from screening and with a smaller but demonstrable impact of risk factor reductions and improved treatments. These declines are projected to continue if risk factor modification, screening, and treatment remain at current rates, but they could be accelerated further with favorable trends in risk factors and higher utilization of screening and optimal treatment. Although the decrease in overall cancer incidence and death rates is encouraging, rising incidence and mortality for some cancers are of concern. Copyright 2009 American Cancer Society.
                Bookmark

                Author and article information

                Journal
                10.3322/caac.21442
                29313949

                Comments

                Comment on this article