0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Soluble mimics of a chemokine receptor: Chemokine binding by receptor elements juxtaposed on a soluble scaffold

      ,
      Protein Science
      Crossref

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines.

          During organogenesis, immunosurveillance, and inflammation, chemokines selectively recruit leukocytes by activating seven-transmembrane-spanning receptors. It has been suggested that an important component of this process is the formation of a haptotactic gradient by immobilization of chemokines on cell surface glycosaminoglycans (GAGs). However, this hypothesis has not been experimentally demonstrated in vivo. In the present study we investigated the effect of mutations in the GAG binding sites of three chemokines, monocyte chemoattractant protein-1/CC chemokine ligand (CCL)2, macrophage-inflammatory protein-1beta/CCL4, and RANTES/CCL5, on their ability to recruit cells in vivo. These mutant chemokines retain chemotactic activity in vitro, but they are unable to recruit cells when administered intraperitoneally. Additionally, monomeric variants, although fully active in vitro, are devoid of activity in vivo. These data demonstrate that both GAG binding and the ability to form higher-order oligomers are essential for the activity of particular chemokines in vivo, although they are not required for receptor activation in vitro. Thus, quaternary structure of chemokines and their interaction with GAGs may significantly contribute to the localization of leukocytes beyond migration patterns defined by chemokine receptor interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glycosaminoglycans mediate cell surface oligomerization of chemokines.

            Chemokines are 8-10 kDa proteins involved in the control of leukocyte trafficking and activation. In free solution, chemokines are monomers at physiologic concentrations, although many multimerize at higher concentrations. Cell surface heparan sulfate may sequester chemokines, increasing their local concentrations and facilitating their binding to receptors expressed on leukocytes. In competitive binding assays using immobilized heparin, a 2-3-fold increase in the bound radiolabeled chemokine was seen with increasing concentrations of unlabeled chemokine in the nanomolar range. Unlabeled chemokine concentrations between 0.25 and 50 microM were needed to compete the bound radioactivity. This biphasic competition curve was not seen for N-methyl-L25 IL-8, a variant of IL-8 which is unable to dimerize. In addition, complexes of chemokine and heparin eluted from gel filtration columns with apparent molecular masses of 33-60 kDa, suggesting that chemokine multimerization had occurred. The physiological relevance of this multimerization process was seen from studies using human endothelial cells. The endothelial cell binding sites for IL-8, RANTES, and MCP-1 were deduced to be glycosaminoglycans since competition assays showed the biphasic curves and micromolar IC50 values seen in studies with immobilized heparin, and mRNA for known chemokine receptors was not detected. Furthermore, digestion of endothelial cell monolayers with glycosaminidases decreased chemokine binding by up to 80%. Glycosaminoglycans can act as modulators of the ligand binding affinity of chemokine receptor-bearing cells. Removal of glycosaminoglycans from CHO cells expressing chemokine receptors CXCR1, CCR1, or CCR2 resulted in 40-70% decreases in the binding of RANTES, MCP-1, IL-8, and MIP-1alpha. Our data show that cell surface glycosaminoglycans induce polymerization of chemokines, increasing their local concentration and therefore enhancing their effects on high-affinity receptors within the local microenvironment.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Structure and function of G protein-coupled receptors.

                Bookmark

                Author and article information

                Journal
                Protein Science
                Protein Science
                Crossref
                09618368
                November 2003
                January 01 2009
                : 12
                : 11
                : 2482-2491
                Article
                10.1110/ps.03254303
                34bed83f-1df4-45a0-94aa-43d27ebf54c4
                © 2009

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article