11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Outcome of Cochlear Implantation in Prelingually Deafened Children According to Molecular Genetic Etiology :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing.

          The extreme genetic heterogeneity of nonsyndromic hearing loss (NSHL) makes genetic diagnosis expensive and time consuming using available methods. To assess the feasibility of target-enrichment and massively parallel sequencing technologies to interrogate all exons of all genes implicated in NSHL, we tested nine patients diagnosed with hearing loss. Solid-phase (NimbleGen) or solution-based (SureSelect) sequence capture, followed by 454 or Illumina sequencing, respectively, were compared. Sequencing reads were mapped using GSMAPPER, BFAST, and BOWTIE, and pathogenic variants were identified using a custom-variant calling and annotation pipeline (ASAP) that incorporates publicly available in silico pathogenicity prediction tools (SIFT, BLOSUM, Polyphen2, and Align-GVGD). Samples included one negative control, three positive controls (one biological replicate), and six unknowns (10 samples total), in which we genotyped 605 single nucleotide polymorphisms (SNPs) by Sanger sequencing to measure sensitivity and specificity for SureSelect-Illumina and NimbleGen-454 methods at saturating sequence coverage. Causative mutations were identified in the positive controls but not in the negative control. In five of six idiopathic hearing loss patients we identified the pathogenic mutation. Massively parallel sequencing technologies provide sensitivity, specificity, and reproducibility at levels sufficient to perform genetic diagnosis of hearing loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in middle eastern families

            Background Identification of genes responsible for medically important traits is a major challenge in human genetics. Due to the genetic heterogeneity of hearing loss, targeted DNA capture and massively parallel sequencing are ideal tools to address this challenge. Our subjects for genome analysis are Israeli Jewish and Palestinian Arab families with hearing loss that varies in mode of inheritance and severity. Results A custom 1.46 MB design of cRNA oligonucleotides was constructed containing 246 genes responsible for either human or mouse deafness. Paired-end libraries were prepared from 11 probands and bar-coded multiplexed samples were sequenced to high depth of coverage. Rare single base pair and indel variants were identified by filtering sequence reads against polymorphisms in dbSNP132 and the 1000 Genomes Project. We identified deleterious mutations in CDH23, MYO15A, TECTA, TMC1, and WFS1. Critical mutations of the probands co-segregated with hearing loss. Screening of additional families in a relevant population was performed. TMC1 p.S647P proved to be a founder allele, contributing to 34% of genetic hearing loss in the Moroccan Jewish population. Conclusions Critical mutations were identified in 6 of the 11 original probands and their families, leading to the identification of causative alleles in 20 additional probands and their families. The integration of genomic analysis into early clinical diagnosis of hearing loss will enable prediction of related phenotypes and enhance rehabilitation. Characterization of the proteins encoded by these genes will enable an understanding of the biological mechanisms involved in hearing loss.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23.

              Recessive splice site and nonsense mutations of PCDH15, encoding protocadherin 15, are known to cause deafness and retinitis pigmentosa in Usher syndrome type 1F (USH1F). Here we report that non-syndromic recessive hearing loss (DFNB23) is caused by missense mutations of PCDH15. This suggests a genotype-phenotype correlation in which hypomorphic alleles cause non-syndromic hearing loss, while more severe mutations of this gene result in USH1F. We localized protocadherin 15 to inner ear hair cell stereocilia, and to retinal photoreceptors by immunocytochemistry. Our results further strengthen the importance of protocadherin 15 in the morphogenesis and cohesion of stereocilia bundles and retinal photoreceptor cell maintenance or function.
                Bookmark

                Author and article information

                Journal
                Ear and Hearing
                Ear and Hearing
                Ovid Technologies (Wolters Kluwer Health)
                0196-0202
                2017
                2017
                : 38
                : 5
                : e316-e324
                Article
                10.1097/AUD.0000000000000437
                28841141
                34c19c05-c620-46dd-81a7-34d291e3cf44
                © 2017
                History

                Comments

                Comment on this article