10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Microvesicles in the Spread of Herpes Simplex Virus 1 in Oligodendrocytic Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in the neurons of sensory ganglia. In some cases, the virus spreads into the central nervous system, causing encephalitis or meningitis. Cells infected with several different types of viruses may secrete microvesicles (MVs) containing viral proteins and RNAs. In some instances, extracellular microvesicles harboring infectious virus have been found. Here we describe the features of shedding microvesicles released by the human oligodendroglial HOG cell line infected with HSV-1 and their participation in the viral cycle. Using transmission electron microscopy, we detected for the first time microvesicles containing HSV-1 virions. Interestingly, the Chinese hamster ovary (CHO) cell line, which is resistant to infection by free HSV-1 virions, was susceptible to HSV-1 infection after being exposed to virus-containing microvesicles. Therefore, our results indicate for the first time that MVs released by infected cells contain virions, are endocytosed by naive cells, and lead to a productive infection. Furthermore, infection of CHO cells was not completely neutralized when virus-containing microvesicles were preincubated with neutralizing anti-HSV-1 antibodies. The lack of complete neutralization and the ability of MVs to infect nectin-1/HVEM-negative CHO-K1 cells suggest a novel way for HSV-1 to spread to and enter target cells. Taken together, our results suggest that HSV-1 could spread through microvesicles to expand its tropism and that microvesicles could shield the virus from neutralizing antibodies as a possible mechanism to escape the host immune response.

          IMPORTANCE Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in neurons. Extracellular vesicles are a heterogeneous group of membrane vesicles secreted by most cell types. Microvesicles, which are extracellular vesicles which derive from the shedding of the plasma membrane, isolated from the supernatant of HSV-1-infected HOG cells were analyzed to find out whether they were involved in the viral cycle. The importance of our investigation lies in the detection, for the first time, of microvesicles containing HSV-1 virions. In addition, virus-containing microvesicles were endocytosed into CHO-K1 cells and were able to actively infect these otherwise nonpermissive cells. Finally, the infection of CHO cells with these virus-containing microvesicles was not completely neutralized by anti-HSV-1 antibodies, suggesting that these extracellular vesicles might shield the virus from neutralizing antibodies as a possible mechanism of immune evasion.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication.

          Normal and malignant cells shed from their surface membranes as well as secrete from the endosomal membrane compartment circular membrane fragments called microvesicles (MV). MV that are released from viable cells are usually smaller in size compared to the apoptotic bodies derived from damaged cells and unlike them do not contain fragmented DNA. Growing experimental evidence indicates that MV are an underappreciated component of the cell environment and play an important pleiotropic role in many biological processes. Generally, MV are enriched in various bioactive molecules and may (i) directly stimulate cells as a kind of 'signaling complex', (ii) transfer membrane receptors, proteins, mRNA and organelles (e.g., mitochondria) between cells and finally (iii) deliver infectious agents into cells (e.g., human immuno deficiency virus, prions). In this review, we discuss the pleiotropic effects of MV that are important for communication between cells, as well as the role of MV in carcinogenesis, coagulation, immune responses and modulation of susceptibility/infectability of cells to retroviruses or prions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biology of oligodendrocyte and myelin in the mammalian central nervous system.

            Oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), and astrocytes constitute macroglia. This review deals with the recent progress related to the origin and differentiation of the oligodendrocytes, their relationships to other neural cells, and functional neuroglial interactions under physiological conditions and in demyelinating diseases. One of the problems in studies of the CNS is to find components, i.e., markers, for the identification of the different cells, in intact tissues or cultures. In recent years, specific biochemical, immunological, and molecular markers have been identified. Many components specific to differentiating oligodendrocytes and to myelin are now available to aid their study. Transgenic mice and spontaneous mutants have led to a better understanding of the targets of specific dys- or demyelinating diseases. The best examples are the studies concerning the effects of the mutations affecting the most abundant protein in the central nervous myelin, the proteolipid protein, which lead to dysmyelinating diseases in animals and human (jimpy mutation and Pelizaeus-Merzbacher disease or spastic paraplegia, respectively). Oligodendrocytes, as astrocytes, are able to respond to changes in the cellular and extracellular environment, possibly in relation to a glial network. There is also a remarkable plasticity of the oligodendrocyte lineage, even in the adult with a certain potentiality for myelin repair after experimental demyelination or human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular vesicles round off communication in the nervous system.

              Functional neural competence and integrity require interactive exchanges among sensory and motor neurons, interneurons and glial cells. Recent studies have attributed some of the tasks needed for these exchanges to extracellular vesicles (such as exosomes and microvesicles), which are most prominently involved in shuttling reciprocal signals between myelinating glia and neurons, thus promoting neuronal survival, the immune response mediated by microglia, and synapse assembly and plasticity. Such vesicles have also been identified as important factors in the spread of neurodegenerative disorders and brain cancer. These extracellular vesicle functions add a previously unrecognized level of complexity to transcellular interactions within the nervous system.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                J Virol
                J. Virol
                jvi
                jvi
                JVI
                Journal of Virology
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0022-538X
                1098-5514
                7 March 2018
                27 April 2018
                15 May 2018
                27 April 2018
                : 92
                : 10
                : e00088-18
                Affiliations
                [a ]Universidad Autónoma de Madrid, Departamento de Biología Molecular, Cantoblanco, Madrid, Spain
                [b ]Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
                [c ]Universidad Autónoma de Madrid, Facultad de Medicina, Madrid, Spain
                [d ]Department of Biological Sciences and Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, USA
                Northwestern University
                Author notes
                Address correspondence to Raquel Bello-Morales, angeles.b@ 123456uam.es .

                Citation Bello-Morales R, Praena B, de la Nuez C, Rejas MT, Guerra M, Galán-Ganga M, Izquierdo M, Calvo V, Krummenacher C, López-Guerrero JA. 2018. Role of microvesicles in the spread of herpes simplex virus 1 in oligodendrocytic cells. J Virol 92:e00088-18. https://doi.org/10.1128/JVI.00088-18.

                Author information
                https://orcid.org/0000-0002-8526-6590
                Article
                00088-18
                10.1128/JVI.00088-18
                5923088
                29514899
                34c5f6ae-2110-4bbd-9c25-f46e31e4e79c
                Copyright © 2018 Bello-Morales et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 26 January 2018
                : 21 February 2018
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 90, Pages: 19, Words: 11446
                Funding
                Funded by: Aeromédica Canaria;
                Award Recipient :
                Categories
                Virus-Cell Interactions
                Custom metadata
                May 2018

                Microbiology & Virology
                extracellular vesicles,microvesicles,oligodendrocytes,viral spread,herpes simplex virus

                Comments

                Comment on this article