8
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Akt1 genetic variants confer increased susceptibility to thyroid cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The PI3K-Akt-mTOR pathway plays a central role in the development of non-medullary thyroid carcinoma (NMTC). Although somatic mutations have been identified in these genes in NMTC patients, the role of germline variants has not been investigated. Here, we selected frequently occurring genetic variants in AKT1, AKT2, AKT3, PIK3CA and MTOR and have assessed their effect on NMTC susceptibility, progression and clinical outcome in a Dutch discovery cohort (154 patients, 188 controls) and a Romanian validation cohort (159 patients, 260 controls). Significant associations with NMTC susceptibility were observed for AKT1 polymorphisms rs3803304, rs2494732 and rs2498804 in the Dutch discovery cohort, of which the AKT1 rs3803304 association was confirmed in the Romanian validation cohort. No associations were observed between PI3K-Akt-mTOR polymorphisms and clinical parameters including histology, TNM staging, treatment response and clinical outcome. Functionally, cells bearing the associated AKT1 rs3803304 risk allele exhibit increased levels of phosphorylated Akt protein, potentially leading to elevated signaling activity of the oncogenic Akt pathway. All together, germline encoded polymorphisms in the PI3K-Akt-mTOR pathway could represent important risk factors in development of NMTC.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found

          Global cancer statistics.

          The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Integrated genomic characterization of papillary thyroid carcinoma.

            (2014)
            Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Here, we describe the genomic landscape of 496 PTCs. We observed a low frequency of somatic alterations (relative to other carcinomas) and extended the set of known PTC driver alterations to include EIF1AX, PPM1D, and CHEK2 and diverse gene fusions. These discoveries reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. Combined analyses of genomic variants, gene expression, and methylation demonstrated that different driver groups lead to different pathologies with distinct signaling and differentiation characteristics. Similarly, we identified distinct molecular subgroups of BRAF-mutant tumors, and multidimensional analyses highlighted a potential involvement of oncomiRs in less-differentiated subgroups. Our results propose a reclassification of thyroid cancers into molecular subtypes that better reflect their underlying signaling and differentiation properties, which has the potential to improve their pathological classification and better inform the management of the disease.
              • Record: found
              • Abstract: found
              • Article: not found

              The changing incidence of thyroid cancer.

              During the past few decades, the incidence of thyroid cancer has increased substantially in many countries, including the USA. The rise in incidence seems to be attributable both to the growing use of diagnostic imaging and fine-needle aspiration biopsy, which has led to enhanced detection and diagnosis of subclinical thyroid cancers, and environmental factors. The latest American Thyroid Association (ATA) practice guidelines for the management of adult patients with thyroid nodules and differentiated thyroid cancer differ substantially from the previous ATA guidelines published in 2009. Specifically, the problems of overdiagnosis and overtreatment of a disease that is typically indolent, where treatment-related morbidity might not be justified by a survival benefit, now seem to be acknowledged. As few modifiable risk factors for thyroid cancer have been established, the specific environmental factors that have contributed to the rising incidence of thyroid cancer remain speculative. However, the findings of several large, well-designed epidemiological studies have provided new information about exposures (such as obesity) that might influence the development of thyroid cancer. In this Review, we describe the changing incidence of thyroid cancer, suggest potential explanations for these trends, emphasize the implications for patients and highlight ongoing and potential strategies to combat this growing clinical and public health issue.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                November 2020
                02 October 2020
                : 9
                : 11
                : 1065-1074
                Affiliations
                [1 ]Department of Pathology , Radboud University Medical Center, Nijmegen, The Netherlands
                [2 ]Radboud Institute for Molecular Life Sciences (RIMLS) , Radboud University Medical Center, Nijmegen, The Netherlands
                [3 ]Department of Endocrinology , Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
                [4 ]Department of Nuclear Medicine and Endocrine Tumors , Institute of Oncology ‘Prof. Dr. Ion Chiricuta’, Cluj-Napoca, Romania
                [5 ]Division of Endocrinology , Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
                [6 ]Endocrinology Clinic , Cluj County Emergency Hospital, Cluj-Napoca, Romania
                Author notes
                Correspondence should be addressed to R Netea-Maier: romana.netea-maier@ 123456radboudumc.nl

                *(T Crezee and M Petrulea contributed equally to this work)

                Article
                EC-20-0311
                10.1530/EC-20-0311
                7774771
                33112820
                34d52430-e76b-4721-8644-4a73c3b30798
                © 2020 The authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 07 July 2020
                : 02 October 2020
                Categories
                Research

                non-medullary thyroid cancer,susceptibility,pi3k/akt/mtor,genetic variation

                Comments

                Comment on this article

                Related Documents Log