32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accuracy of Heart Rate Watches: Implications for Weight Management

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Wrist-worn monitors claim to provide accurate measures of heart rate and energy expenditure. People wishing to lose weight use these devices to monitor energy balance, however the accuracy of these devices to measure such parameters has not been established.

          Aim

          To determine the accuracy of four wrist-worn devices (Apple Watch, Fitbit Charge HR, Samsung Gear S and Mio Alpha) to measure heart rate and energy expenditure at rest and during exercise.

          Methods

          Twenty-two healthy volunteers (50% female; aged 24 ± 5.6 years) completed ~1-hr protocols involving supine and seated rest, walking and running on a treadmill and cycling on an ergometer. Data from the devices collected during the protocol were compared with reference methods: electrocardiography (heart rate) and indirect calorimetry (energy expenditure).

          Results

          None of the devices performed significantly better overall, however heart rate was consistently more accurate than energy expenditure across all four devices. Correlations between the devices and reference methods were moderate to strong for heart rate (0.67–0.95 [0.35 to 0.98]) and weak to strong for energy expenditure (0.16–0.86 [-0.25 to 0.95]). All devices underestimated both outcomes compared to reference methods. The percentage error for heart rate was small across the devices (range: 1–9%) but greater for energy expenditure (9–43%). Similarly, limits of agreement were considerably narrower for heart rate (ranging from -27.3 to 13.1 bpm) than energy expenditure (ranging from -266.7 to 65.7 kcals) across devices.

          Conclusion

          These devices accurately measure heart rate. However, estimates of energy expenditure are poor and would have implications for people using these devices for weight loss.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study

          Background Technological advances have seen a burgeoning industry for accelerometer-based wearable activity monitors targeted at the consumer market. The purpose of this study was to determine the convergent validity of a selection of consumer-level accelerometer-based activity monitors. Methods 21 healthy adults wore seven consumer-level activity monitors (Fitbit One, Fitbit Zip, Jawbone UP, Misfit Shine, Nike Fuelband, Striiv Smart Pedometer and Withings Pulse) and two research-grade accelerometers/multi-sensor devices (BodyMedia SenseWear, and ActiGraph GT3X+) for 48-hours. Participants went about their daily life in free-living conditions during data collection. The validity of the consumer-level activity monitors relative to the research devices for step count, moderate to vigorous physical activity (MVPA), sleep and total daily energy expenditure (TDEE) was quantified using Bland-Altman analysis, median absolute difference and Pearson’s correlation. Results All consumer-level activity monitors correlated strongly (r > 0.8) with research-grade devices for step count and sleep time, but only moderately-to-strongly for TDEE (r = 0.74-0.81) and MVPA (r = 0.52-0.91). Median absolute differences were generally modest for sleep and steps (<10% of research device mean values for the majority of devices) moderate for TDEE (<30% of research device mean values), and large for MVPA (26-298%). Across the constructs examined, the Fitbit One, Fitbit Zip and Withings Pulse performed most strongly. Conclusions In free-living conditions, the consumer-level activity monitors showed strong validity for the measurement of steps and sleep duration, and moderate valid for measurement of TDEE and MVPA. Validity for each construct ranged widely between devices, with the Fitbit One, Fitbit Zip and Withings Pulse being the strongest performers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influence of skin type and wavelength on light wave reflectance.

            A new application of photoplethysmography (PPG) has emerged recently to provide the possibility of heart rate monitoring without a telemetric chest strap. The aim of this study was to determine if a new device could detect pulsation over a broad range of skin types, and what light wavelength would be most suitable for detecting the signals. A light emitting diode-based PPG system was used to detect changes in pulsatile blood flow on 23 apparently healthy individuals (11 male and 12 female, 20-59 years old) of varying skin types classified according to a questionnaire in combination with digital photographs with a skin type chart. Four different light wavelengths (470, 520, 630, and 880 nm) were tested. Normalized modulation level is calculated as the AC/DC component ratio and represents the change in flow over the underlying constant state of flow or perfusion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Validation of the Fitbit wireless activity tracker for prediction of energy expenditure.

              The purpose of this study was to examine the accuracy of the Fitbit wireless activity tracker in assessing energy expenditure (EE) for different activities.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                27 May 2016
                2016
                : 11
                : 5
                : e0154420
                Affiliations
                [1 ]Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
                [2 ]K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
                University of Las Palmas de Gran Canaria, SPAIN
                Author notes

                Competing Interests: The principal investigator on the study (Coombes) received an unrestricted grant from Coca Cola that was used to partially fund this study. The purpose of the financial support was to support research investigating the effects of high intensity exercise on energy balance in participants with the metabolic syndrome. To assess energy expenditure we first wanted to conduct a sub-study to investigate the accuracy of wrist worn devices to collect these data – leading to the submitted manuscript. As an unrestricted grant, Coca Cola had no input or control over any aspect of the study. Our only obligation/communication to Coca Cola regarding this study is to notify them of what we had done. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials. Professor Wisløff (co-investigator on the study) is Director of a company (Beatstack) that has developed and patented a smart phone application called the ‘Personal Activity Intelligence, PAI’. Beatstack is now partially owned by Mio Global. This has led to the PAI app only being able to utilise heart rate data from Mio devices. Mio are developing more wrist worn heart rate devices (as would be most similar companies) and Professor Wisløff is working with the company to develop these products as part of his involvement in the Beatstack company and his interests in the PAI app. None of the Beatstack products or the Mio company had any involvement in the study. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: MW SG JC UW. Performed the experiments: MW. Analyzed the data: MW JC SG SK. Wrote the paper: MW SG SK UW JC.

                Article
                PONE-D-15-55600
                10.1371/journal.pone.0154420
                4883747
                27232714
                34d9d062-a648-494e-a01a-b358b0be98d0
                © 2016 Wallen et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 December 2015
                : 13 April 2016
                Page count
                Figures: 5, Tables: 1, Pages: 11
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100004367, Coca-Cola;
                Award Recipient :
                The principal investigator on the study (Coombes) received an unrestricted grant from Coca Cola that was used to partially fund this study (Research Master Number 2014002786, http://transparency.coca-colajourney.com.au). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There was no additional external funding received for this study.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Bioenergetics
                Medicine and Health Sciences
                Cardiology
                Heart Rate
                Engineering and Technology
                Equipment
                Measurement Equipment
                Research and Analysis Methods
                Bioassays and Physiological Analysis
                Electrophysiological Techniques
                Cardiac Electrophysiology
                Electrocardiography
                Medicine and Health Sciences
                Public and Occupational Health
                Physical Activity
                Physical Fitness
                Exercise
                Medicine and Health Sciences
                Sports and Exercise Medicine
                Exercise
                Biology and Life Sciences
                Sports Science
                Sports and Exercise Medicine
                Exercise
                Medicine and Health Sciences
                Public and Occupational Health
                Physical Activity
                Biology and Life Sciences
                Biomechanics
                Biological Locomotion
                Walking
                Biology and Life Sciences
                Physiology
                Biological Locomotion
                Walking
                Medicine and Health Sciences
                Physiology
                Biological Locomotion
                Walking
                Research and Analysis Methods
                Chemical Characterization
                Calorimetry
                Indirect Calorimetry
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article