18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Extracellular Matrix in Kidney Fibrosis: More Than Just a Scaffold

      1 , 1 , 2
      Journal of Histochemistry & Cytochemistry
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kidney fibrosis is the common histological end-point of progressive, chronic kidney diseases (CKDs) regardless of the underlying etiology. The hallmark of renal fibrosis, similar to all other organs, is pathological deposition of extracellular matrix (ECM). Renal ECM is a complex network of collagens, elastin, and several glycoproteins and proteoglycans forming basal membranes and interstitial space. Several ECM functions beyond providing a scaffold and organ stability are being increasingly recognized, for example, in inflammation. ECM composition is determined by the function of each of the histological compartments of the kidney, that is, glomeruli, tubulo-interstitium, and vessels. Renal ECM is a dynamic structure undergoing remodeling, particularly during fibrosis. From a clinical perspective, ECM proteins are directly involved in several rare renal diseases and indirectly in CKD progression during renal fibrosis. ECM proteins could serve as specific non-invasive biomarkers of fibrosis and scaffolds in regenerative medicine. The gold standard and currently only specific means to measure renal fibrosis is renal biopsy, but new diagnostic approaches are appearing. Here, we discuss the localization, function, and remodeling of major renal ECM components in healthy and diseased, fibrotic kidneys and the potential use of ECM in diagnostics of renal fibrosis and in tissue engineering.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: not found

          Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis.

          The human kidney contains up to 2 million epithelial nephrons responsible for blood filtration. Regenerating the kidney requires the induction of the more than 20 distinct cell types required for excretion and the regulation of pH, and electrolyte and fluid balance. We have previously described the simultaneous induction of progenitors for both collecting duct and nephrons via the directed differentiation of human pluripotent stem cells. Paradoxically, although both are of intermediate mesoderm in origin, collecting duct and nephrons have distinct temporospatial origins. Here we identify the developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors. Using this knowledge, we have generated kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells. Within these organoids, individual nephrons segment into distal and proximal tubules, early loops of Henle, and glomeruli containing podocytes elaborating foot processes and undergoing vascularization. When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney. Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds.

            The definitive treatment for end-stage organ failure is orthotopic transplantation. However, the demand for transplantation far exceeds the number of available donor organs. A promising tissue-engineering/regenerative-medicine approach for functional organ replacement has emerged in recent years. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. However, significant challenges for three-dimensional organ engineering approach remain. This manuscript describes the fundamental concepts of whole-organ engineering, including characterization of the extracellular matrix as a scaffold, methods for decellularization of vascular organs, potential cells to reseed such a scaffold, techniques for the recellularization process and important aspects regarding bioreactor design to support this approach. Critical challenges and future directions are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular and molecular mechanisms in kidney fibrosis.

              Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution.
                Bookmark

                Author and article information

                Journal
                Journal of Histochemistry & Cytochemistry
                J Histochem Cytochem.
                SAGE Publications
                0022-1554
                1551-5044
                May 22 2019
                September 2019
                May 22 2019
                September 2019
                : 67
                : 9
                : 643-661
                Affiliations
                [1 ]Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
                [2 ]Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
                Article
                10.1369/0022155419849388
                6713975
                31116062
                34ddd887-5d33-4943-992e-fdff5a309744
                © 2019

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article