10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiST 3.0: an updated microbial signal transduction database with an emphasis on chemosensory systems

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria and archaea employ dedicated signal transduction systems that modulate gene expression, second-messenger turnover, quorum sensing, biofilm formation, motility, host-pathogen and beneficial interactions. The updated MiST database provides a comprehensive classification of microbial signal transduction systems. This update is a result of a substantial scaling to accommodate constantly growing microbial genomic data. More than 125 000 genomes, 516 million genes and almost 100 million unique protein sequences are currently stored in the database. For each bacterial and archaeal genome, MiST 3.0 provides a complete signal transduction profile, thus facilitating theoretical and experimental studies on signal transduction and gene regulation. New software infrastructure and distributed pipeline implemented in MiST 3.0 enable regular genome updates based on the NCBI RefSeq database. A novel MiST feature is the integration of unique profile HMMs to link complex chemosensory systems with corresponding chemoreceptors in bacterial and archaeal genomes. The data can be explored online or via RESTful API (freely available at https://mistdb.com).

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Two-component signal transduction.

          Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein. The histidine protein kinase, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the response regulator protein. Phosphorylation induces a conformational change in the regulatory domain that results in activation of an associated domain that effects the response. The basic scheme is highly adaptable, and numerous variations have provided optimization within specific signaling systems. The domains of two-component proteins are modular and can be integrated into proteins and pathways in a variety of ways, but the core structures and activities are maintained. Thus detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new generation of homology search tools based on probabilistic inference.

            Many theoretical advances have been made in applying probabilistic inference methods to improve the power of sequence homology searches, yet the BLAST suite of programs is still the workhorse for most of the field. The main reason for this is practical: BLAST's programs are about 100-fold faster than the fastest competing implementations of probabilistic inference methods. I describe recent work on the HMMER software suite for protein sequence analysis, which implements probabilistic inference using profile hidden Markov models. Our aim in HMMER3 is to achieve BLAST's speed while further improving the power of probabilistic inference based methods. HMMER3 implements a new probabilistic model of local sequence alignment and a new heuristic acceleration algorithm. Combined with efficient vector-parallel implementations on modern processors, these improvements synergize. HMMER3 uses more powerful log-odds likelihood scores (scores summed over alignment uncertainty, rather than scoring a single optimal alignment); it calculates accurate expectation values (E-values) for those scores without simulation using a generalization of Karlin/Altschul theory; it computes posterior distributions over the ensemble of possible alignments and returns posterior probabilities (confidences) in each aligned residue; and it does all this at an overall speed comparable to BLAST. The HMMER project aims to usher in a new generation of more powerful homology search tools based on probabilistic inference methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making sense of it all: bacterial chemotaxis.

              Bacteria must be able to respond to a changing environment, and one way to respond is to move. The transduction of sensory signals alters the concentration of small phosphorylated response regulators that bind to the rotary flagellar motor and cause switching. This simple pathway has provided a paradigm for sensory systems in general. However, the increasing number of sequenced bacterial genomes shows that although the central sensory mechanism seems to be common to all bacteria, there is added complexity in a wide range of species.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                08 January 2020
                22 November 2019
                22 November 2019
                : 48
                : D1
                : D459-D464
                Affiliations
                [1 ] Department of Microbiology, The Ohio State University , Columbus, OH 43210, USA
                [2 ] Division of Biology and Biological Engineering, California Institute of Technology , Pasadena, CA 91125, USA
                [3 ] Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University , Istanbul 34956, Turkey
                [4 ] Ulritech, LLC , Mount Pleasant, SC 29466, USA
                Author notes
                To whom correspondence should be addressed. Tel. +1 614 292 4860; Email: jouline.1@ 123456osu.edu
                Correspondence may also be addressed to Luke Ulrich. Tel. +1 843 408 6096; Email: ulrich.luke@ 123456gmail.com

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

                Author information
                http://orcid.org/0000-0002-6708-5323
                Article
                gkz988
                10.1093/nar/gkz988
                6943060
                31754718
                34e5358a-640b-43b7-a750-515b3df59be9
                © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 October 2019
                : 11 October 2019
                : 10 September 2019
                Page count
                Pages: 6
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: R01DE024463
                Award ID: R35GM131760
                Categories
                Database Issue

                Genetics
                Genetics

                Comments

                Comment on this article