35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mountain Refugia Play a Role in Soil Arthropod Speciation on Madagascar: A Case Study of the Endemic Giant Fire-Millipede Genus Aphistogoniulus

      research-article
      1 , * , 2 , 3
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To elucidate the speciation mechanisms prevalent within hotspots of biodiversity, and the evolutionary processes behind the rise of their species-rich and endemic biota, we investigated the phylogeny of the giant fire-millipede genus Aphistogoniulus Silvestri, 1897, a Malagasy endemic. This study is the first comprehensive (molecular and morphological) phylogenetic study focusing on millipede (class Diplopoda) speciation on Madagascar. The morphological analysis is based on 35 morphological characters and incorporates ten described as well as two newly described species ( A. rubrodorsalis n. sp. and A. jeekeli n. sp.) of Aphistogoniulus. The molecular analysis is based on both mitochondrial (COI and 16S), and nuclear genes (complete 18S rDNA), together comprised of 3031 base pairs, which were successfully sequenced for 31 individual specimens and eight species of Aphistogoniulus. In addition to the null-model (speciation by distance), two diversification models, mountain refugia and ecotone shift, were discovered to play a role in the speciation of soil arthropods on Madagascar. Mountain refugia were important in the speciation of the A. cowani clade, with three species occurring in the Andringitra and Ranomafana Mountains in the southeast ( A. cowani), the Ambohijanahary and Ambohitantely Mountains in the mid-west ( A. sanguineus), and the Marojejy Mountain in the northeast ( A. rubrodorsalis n. sp.). An ecotone shift from the eastern rainforest to the unique subarid spiny forest of Mahavelo was discovered in the A. vampyrus - A. aridus species-pair. In the monophyletic A. diabolicus clade, evidence for divergent evolution of sexual morphology was detected: species with greatly enlarged gonopods are sister-taxa to species with normal sized gonopods. Among the large-bodied Spirobolida genera of Madagascar, Colossobolus and Sanguinobolus were found to be close sister-genera to Aphistogoniulus. Forest destruction has caused forest corridors between populations to disappear, which might limit the possible resolution of biogeographic analyses on Madagascar.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.

          A thermostable DNA polymerase was used in an in vitro DNA amplification procedure, the polymerase chain reaction. The enzyme, isolated from Thermus aquaticus, greatly simplifies the procedure and, by enabling the amplification reaction to be performed at higher temperatures, significantly improves the specificity, yield, sensitivity, and length of products that can be amplified. Single-copy genomic sequences were amplified by a factor of more than 10 million with very high specificity, and DNA segments up to 2000 base pairs were readily amplified. In addition, the method was used to amplify and detect a target DNA molecule present only once in a sample of 10(5) cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arthropods on islands: colonization, speciation, and conservation.

            Islands have traditionally been considered to be any relatively small body of land completely surrounded by water. However, their primary biological characteristic, an extended period of isolation from a source of colonists, is common also to many situations on continents. Accordingly, theories and predictions developed for true islands have been applied to a huge array of systems, from rock pools, to single tree species in forests, to oceanic islands. Here, we examine the literature on islands in the broadest sense (i.e., whether surrounded by water or any other uninhabitable matrix) as it pertains to terrestrial arthropods. We categorize islands according to the features they share. The primary distinction between different island systems is "darwinian" islands (formed de novo) and "fragment" islands. In the former, the islands have never been in contact with the source of colonists and have abundant "empty" ecological niche space. On these islands, species numbers will initially increase through immigration, the rate depending on the degree of isolation. If isolation persists, over time species formation will result in "neo-endemics." When isolation is extreme, the ecological space will gradually be filled through speciation (rather than immigration) and adaptive radiation of neo-endemics. Fragment islands are fundamentally different. In these islands, the ecological space will initially be filled as a consequence of connection to the source of colonists prior to insularization. Species numbers will decrease following fragmentation through the process of relaxation. If these islands become more isolated, species will eventually arise through relictualization with the formation of "paleo-endemics." Given sufficient time, this process can result in generic level endemism on ancient fragment islands, a phenomenon well illustrated in Madagascar and New Zealand. Recognizing the distinction between the different kinds of islands is fundamental for understanding emerging patterns on each, in particular speciation, biodiversity (e.g., neo-endemics versus paleo-endemics), and conservation (e.g., naiveté in interactions with alien species).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Phylogenetic relationships in Cortinarius, section Calochroi, inferred from nuclear DNA sequences

              Background Section Calochroi is one of the most species-rich lineages in the genus Cortinarius (Agaricales, Basidiomycota) and is widely distributed across boreo-nemoral areas, with some extensions into meridional zones. Previous phylogenetic studies of Calochroi (incl. section Fulvi) have been geographically restricted; therefore, phylogenetic and biogeographic relationships within this lineage at a global scale have been largely unknown. In this study, we obtained DNA sequences from a nearly complete taxon sampling of known species from Europe, Central America and North America. We inferred intra- and interspecific phylogenetic relationships as well as major morphological evolutionary trends within section Calochroi based on 576 ITS sequences, 230 ITS + 5.8S + D1/D2 sequences, and a combined dataset of ITS + 5.8S + D1/D2 and RPB1 sequences of a representative subsampling of 58 species. Results More than 100 species were identified by integrating DNA sequences with morphological, macrochemical and ecological data. Cortinarius section Calochroi was consistently resolved with high branch support into at least seven major lineages: Calochroi, Caroviolacei, Dibaphi, Elegantiores, Napi, Pseudoglaucopodes and Splendentes; whereas Rufoolivacei and Sulfurini appeared polyphyletic. A close relationship between Dibaphi, Elegantiores, Napi and Splendentes was consistently supported. Combinations of specific morphological, pigmentation and molecular characters appear useful in circumscribing clades. Conclusion Our analyses demonstrate that Calochroi is an exclusively northern hemispheric lineage, where species follow their host trees throughout their natural ranges within and across continents. Results of this study contribute substantially to defining European species in this group and will help to either identify or to name new species occurring across the northern hemisphere. Major groupings are in partial agreement with earlier morphology-based and molecular phylogenetic hypotheses, but some relationships were unexpected, based on external morphology. In such cases, their true affinities appear to have been obscured by the repeated appearance of similar features among distantly related species. Therefore, further taxonomic studies are needed to evaluate the consistency of species concepts and interpretations of morphological features in a more global context. Reconstruction of ancestral states yielded two major evolutionary trends within section Calochroi: (1) the development of bright pigments evolved independently multiple times, and (2) the evolution of abruptly marginate to flattened stipe bulbs represents an autapomorphy of the Calochroi clade.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                6 December 2011
                : 6
                : 12
                : e28035
                Affiliations
                [1 ]Zoological Research Museum Alexander Koenig, Bonn, Germany
                [2 ]AG Molekulare Taxonomie Mariner Organismen, Deutsches Zentrum für Marine Biodiversitätsforschung, Senckenberg am Meer, Wilhelmshaven, Germany
                [3 ]Metadatenbank Myriapoda, Bodenzoologie, Senckenberg Museum für Naturkunde Görlitz, Görlitz, Germany
                Field Museum of Natural History, United States of America
                Author notes

                Conceived and designed the experiments: TW MJR PD. Performed the experiments: TW MJR. Analyzed the data: TW MJR. Contributed reagents/materials/analysis tools: TW MJR. Wrote the paper: TW MJR PD.

                Article
                PONE-D-11-01446
                10.1371/journal.pone.0028035
                3232213
                22162998
                34e776a2-5eb1-49e4-9267-fe8b8c51089b
                Wesener et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 January 2011
                : 29 October 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Comparative Genomics
                Ecology
                Ecological Metrics
                Species Diversity
                Biogeography
                Evolutionary Ecology
                Evolutionary Biology
                Evolutionary Processes
                Speciation
                Evolutionary Systematics
                Taxonomy
                Animal Taxonomy
                Phylogenetics
                Forms of Evolution
                Divergent Evolution
                Organismal Evolution
                Animal Evolution
                Eukaryotic Evolution
                Comparative Genomics
                Evolutionary Genetics
                Zoology
                Entomology
                Earth Sciences
                Geography
                Biogeography

                Uncategorized
                Uncategorized

                Comments

                Comment on this article