14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of environmental synthetic chemicals on thyroid function.

      Thyroid : official journal of the American Thyroid Association
      Amitrole, poisoning, Animals, DDT, Environmental Pollutants, Humans, Industrial Waste, Pesticides, Thiocarbamates, Thyroid Diseases, chemically induced, physiopathology, Thyroid Gland

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthetic chemicals are released into the environment by design (pesticides) or as a result of industrial activity. It is well known that natural environmental chemicals can cause goiter or thyroid imbalance. However, the effects of synthetic chemicals on thyroid function have received little attention, and there is much controversy over their potential clinical impact, because few studies have been conducted in humans. This article reviews the literature on possible thyroid disruption in wildlife, humans, and experimental animals and focuses on the most studied chemicals: the pesticides DDT, amitrole, and the thiocarbamate family, including ethylenethiourea, and the industrial chemicals polyhalogenated hydrocarbons, phenol derivatives, and phthalates. Wildlife observations in polluted areas clearly demonstrate a significant incidence of goiter and/or thyroid imbalance in several species. Experimental evidence in rodents, fish, and primates confirms the potentiality for thyroid disruption of several chemicals and illustrates the mechanisms involved. In adult humans, however, exposure to background levels of chemicals does not seem to have a significant negative effect on thyroid function, while exposure at higher levels, occupational or accidental, may produce mild thyroid changes. The impact of transgenerational, background exposure in utero on fetal neurodevelopment and later childhood cognitive function is now under scrutiny. There are several studies linking a lack of optimal neurological function in infants and children with high background levels of exposure to polychlorinated biphenyls (PCBs), dioxins, and/or co-contaminants, but it is unclear if the effects are caused by thyroid disruption in utero or direct neurotoxicity.

          Related collections

          Author and article information

          Comments

          Comment on this article