6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of a delayed rectifier potassium current in chicken growth plate chondrocytes.

      The American journal of physiology
      4-Aminopyridine, pharmacology, Animals, Cartilage, cytology, physiology, Cells, Cultured, Charybdotoxin, Chickens, Chlorides, Electric Conductivity, Growth Plate, Potassium, antagonists & inhibitors, Scorpion Venoms, Zinc, Zinc Compounds

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the use of the whole cell arrangement of the patch-clamp technique, an outward-directed time-dependent potassium current was identified in cultured chicken growth plate chondrocytes. This delayed rectifier potassium current (IK) activated with a sigmoidal time course during voltage steps to potentials positive to -40 mV. The half-maximal voltage required for current activation was determined to be -8 mV. The reversal potential (Erev) for IK, measured using deactivating tail currents, was -72 mV in the presence of 140 mM internal and 5 mM external [K+] solutions. Changes in external [K+] caused Erev to shift in a manner expected for a potassium-selective channel. In addition, increasing external [K+] from 5 to 50 mM caused the slope conductance of the tail currents to increase twofold. The chondrocyte IK was inhibited by the potassium-channel blocker 4-aminopyridine (4-AP) at concentrations of 0.5-4 mM and by the scorpion venom toxin charybdotoxin (CTX; 10 nM) but was unaffected by 10 mM tetraethylammonium (TEA). Addition of 20 microM ZnCl2 reduced IK in a voltage-dependent manner with the greatest inhibition found to occur at potentials near the threshold for current activation. Reduction of IK by ZnCl2 was accompanied by a slowing in the kinetics of IK activation. On the basis of the gating and pharmacological properties of this current, it is suggested that the chondrocyte channel belongs to a superfamily of K+ channels found in bone and immune system cells. The chondrocyte K+ channel may contribute to the unusually high [K+] found in the extracellular fluid of growth plate cartilage.

          Related collections

          Author and article information

          Comments

          Comment on this article