+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Phase Coupling of a Circadian Neuropeptide With Rest/Activity Rhythms Detected Using a Membrane-Tethered Spider Toxin

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Drosophila clock neurons are self-sustaining cellular oscillators that rely on negative transcriptional feedback to keep circadian time. Proper regulation of organismal rhythms of physiology and behavior requires coordination of the oscillations of individual clock neurons within the circadian control network. Over the last decade, it has become clear that a key mechanism for intercellular communication in the circadian network is signaling between a subset of clock neurons that secrete the neuropeptide pigment dispersing factor (PDF) and clock neurons that possess its G protein-coupled receptor (PDFR). Furthermore, the specific hypothesis has been proposed that PDF-secreting clock neurons entrain the phase of organismal rhythms, and the cellular oscillations of other clock neurons, via the temporal patterning of secreted PDF signals. In order to test this hypothesis, we have devised a novel technique for altering the phase relationship between circadian transcriptional feedback oscillation and PDF secretion by using an ion channel–directed spider toxin to modify voltage-gated Na + channel inactivation in vivo. This technique relies on the previously reported “tethered-toxin” technology for cell-autonomous modulation of ionic conductances via heterologous expression of subtype-specific peptide ion channel toxins as chimeric fusion proteins tethered to the plasma membrane with a glycosylphosphatidylinositol (GPI) anchor. We demonstrate for the first time, to our knowledge, the utility of the tethered-toxin technology in a transgenic animal, validating four different tethered spider toxin ion channel modifiers for use in Drosophila. Focusing on one of these toxins, we show that GPI-tethered Australian funnel-web spider toxin δ-ACTX-Hv1a inhibits Drosophila para voltage-gated Na + channel inactivation when coexpressed in Xenopus oocytes. Transgenic expression of membrane-tethered δ-ACTX-Hv1a in vivo in the PDF-secreting subset of clock neurons induces rhythmic action potential bursts and depolarized plateau potentials. These in vitro and in vivo electrophysiological effects of membrane-tethered δ-ACTX-Hv1a are consistent with the effects of soluble δ-ACTX-Hv1a purified from venom on Na + channel physiological and biophysical properties in cockroach neurons. Membrane-tethered δ-ACTX-Hv1a expression in the PDF-secreting subset of clock neurons induces an approximately 4-h phase advance of the rhythm of PDF accumulation in their terminals relative to both the phase of the day:night cycle and the phase of the circadian transcriptional feedback loops. As a consequence, the morning anticipatory peak of locomotor activity preceding dawn, which has been shown to be driven by the clocks of the PDF-secreting subset of clock neurons, phase advances coordinately with the phase of the PDF rhythm of the PDF-secreting clock neurons, rather than maintaining its phase relationship with the day:night cycle and circadian transcriptional feedback loops. These results (1) validate the tethered-toxin technology for cell-autonomous modulation of ion channel biophysical properties in vivo in transgenic Drosophila, (2) demonstrate that the kinetics of para Na + channel inactivation is a key parameter for determining the phase relationship between circadian transcriptional feedback oscillation and PDF secretion, and (3) provide experimental support for the hypothesis that PDF-secreting clock neurons entrain the phase of organismal rhythms via the temporal patterning of secreted PDF signals.

          Author Summary

          The regulation of the daily fluctuations that characterize an organism's physiology and behavior requires coordination of the cellular oscillations of individual “clock” neurons within the circadian control network. Clock neurons that secrete a neuropeptide called pigment dispersing factor (PDF) calibrate, or entrain, both the phase of organismal rhythms and the cellular oscillations of other clock neurons. In this study, we tested the hypothesis that phase of PDF secretion rhythms entrains phase of non-PDF neurons and locomotor rhythms using the tethered- toxin technique (which affixes toxins to the cell membrane) to express ion channel–specific peptide toxins in PDF neurons. A particular toxin inhibits inactivation of the Drosophila para sodium (Na +) channel. Inhibition of Na + channel inactivation in PDF neurons of transgenic flies induces phase advance of PDF rhythm, and correlated phase advance of lights-on anticipatory locomotor activity, suggesting that phase of morning activity is determined by phase of PDF oscillation. Therefore, voltage-gated Na + channels of Drosophila clock neurons play a key role in determining the phase relationship between circadian transcriptional feedback oscillation and PDF secretion, and PDF-secreting clock neurons entrain the phase of organismal rhythms via the temporal patterning of secreted PDF signals.


          Cell-autonomous inhibition of Drosophila para Na + channel inactivation using a membrane-tethered spider toxin phase shifts circadian neuropeptide output from cellular oscillation, and the phase of morning anticipatory activity is determined by this phase-shifted neuropeptide output.

          Related collections

          Most cited references 65

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.

           N Perrimon,  H. Brand (1993)
          We have designed a system for targeted gene expression that allows the selective activation of any cloned gene in a wide variety of tissue- and cell-specific patterns. The gene encoding the yeast transcriptional activator GAL4 is inserted randomly into the Drosophila genome to drive GAL4 expression from one of a diverse array of genomic enhancers. It is then possible to introduce a gene containing GAL4 binding sites within its promoter, to activate it in those cells where GAL4 is expressed, and to observe the effect of this directed misexpression on development. We have used GAL4-directed transcription to expand the domain of embryonic expression of the homeobox protein even-skipped. We show that even-skipped represses wingless and transforms cells that would normally secrete naked cuticle into denticle secreting cells. The GAL4 system can thus be used to study regulatory interactions during embryonic development. In adults, targeted expression can be used to generate dominant phenotypes for use in genetic screens. We have directed expression of an activated form of the Dras2 protein, resulting in dominant eye and wing defects that can be used in screens to identify other members of the Dras2 signal transduction pathway.
            • Record: found
            • Abstract: found
            • Article: not found

            Spatiotemporal rescue of memory dysfunction in Drosophila.

            We have developed a method for temporal and regional gene expression targeting (TARGET) in Drosophila and show the simultaneous spatial and temporal rescue of a memory defect. The transient expression of the rutabaga-encoded adenylyl cyclase in the mushroom bodies of the adult brain was necessary and sufficient to rescue the rutabaga memory deficit, which rules out a developmental brain defect in the etiology of this deficit and demonstrates an acute role for rutabaga in memory formation in these neurons. The TARGET system offers general utility in simultaneously addressing issues of when and where gene products are required.
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic transformation of Drosophila with transposable element vectors.

              Exogenous DNA sequences were introduced into the Drosophila germ line. A rosy transposon (ry1), constructed by inserting a chromosomal DNA fragment containing the wild-type rosy gene into a P transposable element, transformed germ line cells in 20 to 50 percent of the injected rosy mutant embryos. Transformants contained one or two copies of chromosomally integrated, intact ry1 that were stably inherited in subsequent generations. These transformed flies had wild-type eye color indicating that the visible genetic defect in the host strain could be fully and permanently corrected by the transferred gene. To demonstrate the generality of this approach, a DNA segment that does not confer a recognizable phenotype on recipients was also transferred into germ line chromosomes.

                Author and article information

                Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
                University of Geneva, Switzerland
                Author notes
                * To whom correspondence should be addressed. E-mail: michael.nitabach@
                Role: Academic Editor
                PLoS Biol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                November 2008
                4 November 2008
                : 6
                : 11
                08-PLBI-RA-3021R2 plbi-06-11-03
                (Academic Editor)
                Copyright: © 2008 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Pages: 18
                Research Article
                Custom metadata
                Wu Y, Cao G, Pavlicek B, Luo X, Nitabach MN (2008) Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. PLoS Biol 6(11): e273. doi: 10.1371/journal.pbio.0060273

                Life sciences


                Comment on this article