1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phototrophic marine benthic microbiomes: the ecophysiology of these biological entities

      1 , 2 , 2 , 3
      Environmental Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.

          Numerous prokaryote genomes contain structures known as clustered regularly interspaced short palindromic repeats (CRISPRs), composed of 25-50 bp repeats separated by unique sequence spacers of similar length. CRISPR structures are found in the vicinity of four genes named cas1 to cas4. In silico analysis revealed another cluster of three genes associated with CRISPR structures in many bacterial species, named here as cas1B, cas5 and cas6, and also revealed a certain number of spacers that have homology with extant genes, most frequently derived from phages, but also derived from other extrachromosomal elements. Sequence analysis of CRISPR structures from 24 strains of Streptococcus thermophilus and Streptococcus vestibularis confirmed the homology of spacers with extrachromosomal elements. Phage sensitivity of S. thermophilus strains appears to be correlated with the number of spacers in the CRISPR locus the strain carries. The authors suggest that the spacer elements are the traces of past invasions by extrachromosomal elements, and hypothesize that they provide the cell immunity against phage infection, and more generally foreign DNA expression, by coding an anti-sense RNA. The presence of gene fragments in CRISPR structures and the nuclease motifs in cas genes of both cluster types suggests that CRISPR formation involves a DNA degradation step.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phage response to CRISPR-encoded resistance in Streptococcus thermophilus.

            Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular electron transfer mechanisms between microorganisms and minerals.

              Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.
                Bookmark

                Author and article information

                Journal
                Environmental Microbiology
                Environ Microbiol
                Wiley
                1462-2912
                1462-2920
                March 12 2019
                May 2019
                December 21 2018
                May 2019
                : 21
                : 5
                : 1529-1551
                Affiliations
                [1 ]IBED Department of Freshwater and Marine EcologyUniversity of Amsterdam Amsterdam The Netherlands
                [2 ]Department of Marine Microbiology and Biogeochemistry, and Utrecht UniversityNetherlands Institute for Sea Research Den Burg, Texel The Netherlands
                [3 ]Bigelow Laboratory for Ocean Sciences East Boothbay ME, 04544 USA
                Article
                10.1111/1462-2920.14494
                3534fb01-04a6-4d38-a269-e058c20a616d
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article