36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Future urban land expansion and implications for global croplands

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d4188731e329">Urbanization’s contribution to land use change emerges as an important sustainability concern. Here, we demonstrate that projected urban area expansion will take place on some of the world’s most productive croplands, in particular in megaurban regions in Asia and Africa. This dynamic adds pressure to potentially strained future food systems and threatens livelihoods in vulnerable regions. </p><p class="first" id="d4188731e332">Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world’s cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8–2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3–4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South. </p>

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Meta-Analysis of Global Urban Land Expansion

            The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leverage points for improving global food security and the environment.

              Achieving sustainable global food security is one of humanity's contemporary challenges. Here we present an analysis identifying key "global leverage points" that offer the best opportunities to improve both global food security and environmental sustainability. We find that a relatively small set of places and actions could provide enough new calories to meet the basic needs for more than 3 billion people, address many environmental impacts with global consequences, and focus food waste reduction on the commodities with the greatest impact on food security. These leverage points in the global food system can help guide how nongovernmental organizations, foundations, governments, citizens' groups, and businesses prioritize actions. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 22 2017
                August 22 2017
                : 114
                : 34
                : 8939-8944
                Article
                10.1073/pnas.1606036114
                5576776
                28028219
                35391a33-cc40-4542-8449-617aeb685ab6
                © 2017
                History

                Comments

                Comment on this article