5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Roles of SETD2 in Leukemia—Transcription, DNA-Damage, and Beyond

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The non-redundant histone methyltransferase SETD2 (SET domain containing 2; KMT3A) is responsible for tri-methylation of lysine 36 on histone H3 (H3K36me3). Presence of the H3K36me3 histone mark across the genome has been correlated with transcriptional activation and elongation, but also with the regulation of DNA mismatch repair, homologous recombination and alternative splicing. The role of SETD2 and the H3K36me3 histone mark in cancer is controversial. SETD2 is lost or mutated in various cancers, supporting a tumor suppressive role of the protein. Alterations in the SETD2 gene are also present in leukemia patients, where they are associated with aggressive disease and relapse. In line, heterozygous SETD2 loss caused chemotherapy resistance in leukemia cell lines and mouse models. In contrast, other studies indicate that SETD2 is critically required for the proliferation of leukemia cells. Thus, although studies of SETD2-dependent processes in cancer have contributed to a better understanding of the SETD2–H3K36me3 axis, many open questions remain regarding its specific role in leukemia. Here, we review the current literature about critical functions of SETD2 in the context of hematopoietic malignancies.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the language of Lys36 methylation at histone H3.

          Histone side chains are post-translationally modified at multiple sites, including at Lys36 on histone H3 (H3K36). Several enzymes from yeast and humans, including the methyltransferases SET domain-containing 2 (Set2) and nuclear receptor SET domain-containing 1 (NSD1), respectively, alter the methylation status of H3K36, and significant progress has been made in understanding how they affect chromatin structure and function. Although H3K36 methylation is most commonly associated with the transcription of active euchromatin, it has also been implicated in diverse processes, including alternative splicing, dosage compensation and transcriptional repression, as well as DNA repair and recombination. Disrupted placement of methylated H3K36 within the chromatin landscape can lead to a range of human diseases, underscoring the importance of this modification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation.

            DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains

              CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-induced mutations to the 5’ exons of candidate genes 1–5 , but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We show that the magnitude of negative selection reports the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                27 February 2019
                March 2019
                : 20
                : 5
                : 1029
                Affiliations
                [1 ]CeMM—Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; an.skucha@ 123456gmail.com
                [2 ]Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090 Vienna, Austria; Jessica.Ebner@ 123456lbicr.lbg.ac.at
                [3 ]Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
                Author notes
                [* ]Correspondence: Florian.Grebien@ 123456vetmeduni.ac.at ; Tel.: +43-1-25077-4200
                Author information
                https://orcid.org/0000-0003-4289-2281
                Article
                ijms-20-01029
                10.3390/ijms20051029
                6429614
                30818762
                3541ee78-a595-40b4-88ad-7ca17e3a1e27
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 January 2019
                : 20 February 2019
                Categories
                Review

                Molecular biology
                setd2,acute myeloid leukemia,mutations,histone modifications
                Molecular biology
                setd2, acute myeloid leukemia, mutations, histone modifications

                Comments

                Comment on this article