158
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dysbiotic Events in Gut Microbiota: Impact on Human Health

      review-article
      * ,
      Nutrients
      MDPI
      microbiota, dysbiosis, healthy, disease

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human body is colonized by a large number of microbes coexisting peacefully with their host. The most colonized site is the gastrointestinal tract (GIT). More than 70% of all the microbes in the human body are in the colon. The microorganism population is 10 times larger of the total number of our somatic and germ cells. Two bacterial phyla, accounting for more than 90% of the bacterial cells, dominate the healthy adult intestine: Firmicutes and Bacteroidetes. Considerable variability in the microbiota compositions between people is found when we look at the taxonomic level of species, and strains within species. It is possible to assert that the human microbiota could be compared to a fingerprint. The microbiota acts as a barrier from pathogens, exerts important metabolic functions, and regulates inflammatory response by stimulating the immune system. Gut microbial imbalance (dysbiosis), has been linked to important human diseases such as inflammation related disorders. The present review summarizes our knowledge on the gut microbiota in a healthy context, and examines intestinal dysbiosis in inflammatory bowel disease (IBD) patients; the most frequently reported disease proven to be associated with changes in the gut microbiota.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis.

          Toll-like receptors (TLRs) play a crucial role in host defense against microbial infection. The microbial ligands recognized by TLRs are not unique to pathogens, however, and are produced by both pathogenic and commensal microorganisms. It is thought that an inflammatory response to commensal bacteria is avoided due to sequestration of microflora by surface epithelia. Here, we show that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis. Furthermore, we find that activation of TLRs by commensal microflora is critical for the protection against gut injury and associated mortality. These findings reveal a novel function of TLRs-control of intestinal epithelial homeostasis and protection from injury-and provide a new perspective on the evolution of host-microbial interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.

            Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology. A susceptibility locus for Crohn's disease has been mapped to chromosome 16. Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes. These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region. NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens. These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells.

              Commensal microbes can have a substantial impact on autoimmune disorders, but the underlying molecular and cellular mechanisms remain largely unexplored. We report that autoimmune arthritis was strongly attenuated in the K/BxN mouse model under germ-free (GF) conditions, accompanied by reductions in serum autoantibody titers, splenic autoantibody-secreting cells, germinal centers, and the splenic T helper 17 (Th17) cell population. Neutralization of interleukin-17 prevented arthritis development in specific-pathogen-free K/BxN mice resulting from a direct effect of this cytokine on B cells to inhibit germinal center formation. The systemic deficiencies of the GF animals reflected a loss of Th17 cells from the small intestinal lamina propria. Introduction of a single gut-residing species, segmented filamentous bacteria, into GF animals reinstated the lamina propria Th17 cell compartment and production of autoantibodies, and arthritis rapidly ensued. Thus, a single commensal microbe, via its ability to promote a specific Th cell subset, can drive an autoimmune disease. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                11 December 2014
                December 2014
                : 6
                : 12
                : 5786-5805
                Affiliations
                Public Health and Infectious Diseases Department, “Sapienza” University of Rome, Rome 00185, Italy; E-Mail: mariapia.conte@ 123456uniroma1.it
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: serena.schippa@ 123456uniroma1.it ; Tel.: +39-649914572; Fax: +39-649914626.
                Article
                nutrients-06-05786
                10.3390/nu6125786
                4276999
                25514560
                354aef28-e65c-4c34-ba91-6b1ff46785b2
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 May 2014
                : 22 July 2014
                : 19 November 2014
                Categories
                Review

                Nutrition & Dietetics
                microbiota,dysbiosis,healthy,disease
                Nutrition & Dietetics
                microbiota, dysbiosis, healthy, disease

                Comments

                Comment on this article