Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca 2+ responses, and neuron cell death in cultured rat hippocampal neurons

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors of the innate immune system recognizing diverse pathogen-derived and tissue damage-related ligands. It has been suggested that TLR signaling contributes to the pathogenesis of age-related, neurodegenerative diseases, including Alzheimer’s disease (AD). AD is associated to oligomers of the amyloid β peptide (Aβo) that cause intracellular Ca 2+ dishomeostasis and neuron cell death in rat hippocampal neurons. Here we assessed the interplay between inflammation and Aβo in long-term cultures of rat hippocampal neurons, an in vitro model of neuron aging and/or senescence.

          Methods

          Ca 2+ imaging and immunofluorescence against annexin V and TLR4 were applied in short- and long-term cultures of rat hippocampal neurons to test the effects of TLR4-agonist LPS and Aβo on cytosolic [Ca 2+] and on apoptosis as well as on expression of TLR4.

          Results

          LPS increases cytosolic [Ca 2+] and promotes apoptosis in rat hippocampal neurons in long-term culture considered aged and/or senescent neurons, but not in short-term cultured neurons considered young neurons. TLR4 antagonist CAY10614 prevents both effects. TLR4 expression in rat hippocampal neurons is significantly larger in aged hippocampal cultures. Treatment of aged hippocampal cultures with Aβo increases TLR4 expression and enhances LPS-induced Ca 2+ responses and neuron cell death.

          Conclusions

          Aging and amyloid β oligomers, the neurotoxin involved in Alzheimer’s disease, enhance TLR4 expression as well as LPS-induced Ca 2+ responses and neuron cell death in rat hippocampal neurons aged in vitro.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12974-017-0802-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and Alzheimer's disease.

          Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination.

            We have systematically optimized the concentrations of 20 components of a previously published serum-free medium (Brewer and Cotman, Brain Res 494: 65-74, 1989) for survival of rat embryonic hippocampal neurons after 4 days in culture. This serum-free medium supplement, B27, produced neuron survival above 60%, independent of plating density above 160 plated cells/mm2. For isolated cells (< 100 cells/mm2), survival at 4 days was still above 45%, but could be rescued to the 60% level at 40 cells/mm2 by simply applying a coverslip on top of the cells. This suggests a need for additional trophic factors. High survival was achieved with osmolarity lower than found in Dulbecco's Modified Eagle's Medium (DMEM), and by reducing cysteine and glutamine concentrations and by the elimination of toxic ferrous sulphate found in DME/F12. Neurobasal is a new medium that incorporates these modifications to DMEM. In B27/Neurobasal, glial growth is reduced to less than 0.5% of the nearly pure neuronal population, as judged by immunocytochemistry for glial fibrillary acidic protein and neuron-specific enolase. Excellent long-term viability is achieved after 4 weeks in culture with greater than 90% viability for cells plated at 640/mm2 and greater than 50% viability for cells plated at 160/mm2. Since the medium also supports the growth of neurons from embryonic rat striatum, substantia nigra, septum, and cortex, and neonatal dentate gyrus and cerebellum (Brewer, in preparation), support for other neuron types is likely. B27/Neurobasal should be useful for in vitro studies of neuronal toxicology, pharmacology, electrophysiology, gene expression, development, and effects of growth factors and hormones.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway.

              Innate immunity is an evolutionarily ancient system that provides organisms with immediately available defense mechanisms through recognition of pathogen-associated molecular patterns. We show that in the CNS, specific activation of innate immunity through a Toll-like receptor 4 (TLR4)-dependent pathway leads to neurodegeneration. We identify microglia as the major lipopolysaccharide (LPS)-responsive cell in the CNS. TLR4 activation leads to extensive neuronal death in vitro that depends on the presence of microglia. LPS leads to dramatic neuronal loss in cultures prepared from wild-type mice but does not induce neuronal injury in CNS cultures derived from tlr4 mutant mice. In an in vivo model of neurodegeneration, stimulating the innate immune response with LPS converts a subthreshold hypoxic-ischemic insult from no discernable neuronal injury to severe axonal and neuronal loss. In contrast, animals bearing a loss-of-function mutation in the tlr4 gene are resistant to neuronal injury in the same model. The present study demonstrates a mechanistic link among innate immunity, TLRs, and neurodegeneration.
                Bookmark

                Author and article information

                Contributors
                mariacalvorodriguez@gmail.com
                c.barrign@ucl.ac.uk
                monicagarciadurillo@gmail.com
                cgarcia@ibgm.uva.es
                carlosv@ibgm.uva.es
                nunezl@ibgm.uva.es
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                31 January 2017
                31 January 2017
                2017
                : 14
                Affiliations
                [1 ]Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
                [2 ]ISNI 0000 0001 2286 5329, GRID grid.5239.d, Departamento de Bioquímica y Biología Molecular y Fisiología, , Universidad de Valladolid, ; Valladolid, Spain
                Article
                802
                10.1186/s12974-017-0802-0
                5282876
                28143556
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003329, Ministerio de Economía y Competitividad;
                Award ID: BFU2015-79131R
                Award ID: SAF2013-44521-R
                Award Recipient :
                Funded by: Junta de Castilla y León, Spain
                Award ID: BIO103/VA45/11
                Award ID: BIO/VA36/15
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Neurosciences

                aging, tlr4, alzheimer’s disease, hippocampal neurons, calcium, amyloid β oligomers

                Comments

                Comment on this article