15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Myelotomy promotes locomotor recovery in rats subjected to spinal cord injury: a meta-analysis of six randomized controlled trials

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE:

          To investigate the effects of myelotomy on locomotor recovery in rats subjected to spinal cord injury.

          DATA SOURCES:

          Electronic databases including PubMed, Science Citation Index, Cochrane Library, China National Knowledge Infrastructure, Chinese Journals Full-text Database, China Biology Medicine disc, and Wanfang Database were searched to retrieve related studies published before September 2017. The MeSH terms (the Medical Subject Headings) such as “myelotomy”, “spinal cord injuries”, “rats”, “randomized controlled trial” and all related entry terms were searched.

          DATA SELECTION:

          Randomized controlled trials using myelotomy for the treatment of acute spinal cord injury in rats were included. Basso, Beattie, and Bresnahan scores were adopted as the evaluation method. RevMan Software (version 5.3) was used for data processing. The χ 2 and I 2 tests were used to assess heterogeneity. Using a random-effects model, a subgroup analysis was conducted to analyze the source of the heterogeneity.

          OUTCOME MEASURES:

          Basso, Beattie, and Bresnahan scores were observed 1–6 weeks after spinal cord injury.

          RESULTS:

          Six animal trials were included, using a total of 143 lab rats. The included trials were divided into two subgroups by injury degrees (moderate or severe). The pooled results showed that, 1–6 weeks after spinal cord injury, the overall Basso, Beattie, and Bresnahan score was significantly higher in the myelotomy group than in the contusion group (weighted mean difference ( WMD) = 0.60; 95% confidence interval (CI): 0.23–0.97; P = 0.001; WMD = 2.10; 95% CI: 1.56–2.64; P < 0.001; WMD = 2.65; 95% CI: 1.73–3.57; P < 0.001; WMD = 1.66; 95% CI: 0.80–2.52; P < 0.001; WMD = 2.09; 95% CI: 0.92–3.26, P < 0.001; WMD = 2.25; 95% CI: 1.06–3.44, P < 0.001). The overall heterogeneity was high ( I 2 = 85%; I 2 = 95%; I 2 = 94%; I 2 = 88%; I 2 = 91%; I 2 = 89%). The results in the moderate injury subgroup showed that Basso, Beattie, and Bresnahan scores were significantly higher in the myelotomy group than in the contusion group ( WMD = 0.91, 95% CI: 0.52–1.3, P < 0.001; WMD = 2.10; 95% CI: 1.56–2.64, P < 0.001; WMD = 2.65; 95% CI: 1.73–3.57, P < 0.001; WMD = 2.50, 95% CI: 1.72–3.28, P < 0.001; WMD = 3.29, 95% CI: 2.21–4.38, P < 0.001; WMD = 3.27; 95% CI: 2.31–4.23, P < 0.001). The relevant heterogeneity was low. However, there were no significant differences in Basso, Beattie, and Bresnahan scores between the myelotomy and contusion groups in the severe injury subgroup at 2 and 3 weeks after the injury ( P = 0.75; P = 0.92).

          CONCLUSION:

          To date, this is the first attempt to summarize the potential effect of myelotomy on locomotor recovery in rats with spinal cord injury. Our findings conclude that myelotomy promotes locomotor recovery in rats with spinal cord injury, especially in those with moderate injury.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Incidence of traumatic spinal cord injury worldwide: a systematic review.

          Traumatic spinal cord injuries (TSCI) are among the most devastating conditions in developed and developing countries, which can be prevented. The situation of TSCI around the world is not well understood which complicates the preventive policy decision making in fight against TSCI. This study was aimed to gather the available information about incidence of TSCI around the world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The assessment of locomotor function in spinal cord injured rats: the importance of objective analysis of coordination.

            The Basso, Beattie and Bresnahan (BBB) locomotor rating scale is the most widely used open field test and has been accepted as a valid way to assess locomotor function after spinal cord contusion injury in the rat. A limitation within the BBB locomotor rating scale is the correct assessment of forelimb (FL)-hindlimb (HL) coordination. This limitation can have major implications for the final assessment of locomotor function. In the present study, we show an objective method to assess coordination based on the regularity index (RI), achieved through the use of the CatWalk method. The RI grades the degree of coordination as the result of the number of normal step sequence patterns multiplied by four and divided by the total amount of paw placements. Using the RI, single walkway crossings can be objectively analyzed on coordination. Integration of the CatWalk based coordination into the BBB scale indicates that objective analysis of coordination results in reliable and more sensitive assessment of locomotor function. This new method has been tested successfully in determination of positive effects of enriched housing on functional recovery after spinal cord injury (SCI).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Respiratory problems and management in people with spinal cord injury

              Spinal cord injury (SCI) is characterised by profound respiratory compromise secondary to the level of loss of motor, sensory and autonomic control associated with the injury. This review aims to detail these anatomical and physiological changes after SCI, and outline their impact on respiratory function. Injury-related impairments in strength substantially alter pulmonary mechanics, which in turn affect respiratory management and care. Options for treatments must therefore be considered in light of these limitations. Key points Respiratory impairment following spinal cord injury (SCI) is more severe in high cervical injuries, and is characterised by low lung volumes and a weak cough secondary to respiratory muscle weakness. Autonomic dysfunction and early-onset sleep disordered breathing compound this respiratory compromise. The mainstays of management following acute high cervical SCI are tracheostomy and ventilation, with noninvasive ventilation and assisted coughing techniques being important in lower cervical and thoracic level injuries. Prompt investigation to ascertain the extent of the SCI and associated injuries, and appropriate subsequent management are important to improve outcomes. Educational aims To describe the anatomical and physiological changes after SCI and their impact on respiratory function. To describe the changes in respiratory mechanics seen in cervical SCI and how these changes affect treatments. To discuss the relationship between injury level and respiratory compromise following SCI, and describe those at increased risk of respiratory complications. To present the current treatment options available and their supporting evidence.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regeneration Research
                Medknow Publications & Media Pvt Ltd (India )
                1673-5374
                1876-7958
                June 2018
                : 13
                : 6
                : 1096-1106
                Affiliations
                [1 ]School of Rehabilitation Medicine, Capital Medical University, Beijing, China
                [2 ]Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
                [3 ]Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
                [4 ]China Rehabilitation Science Institute, Beijing, China
                [5 ]Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
                Author notes
                [* ] Correspondence to: Jian-Jun Li, crrclijj@ 123456163.com .

                Author contributions: Study design: JJL. Data extraction: CQ and WHZ. Study quality assessment: DGY and MLY. Statistical analysis: LJD. Manuscript writing: CQ. All authors approved the final version of the paper.

                [#]

                These authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0002-8441-7537
                Article
                NRR-13-1096
                10.4103/1673-5374.233454
                6022467
                29926838
                3570692d-2294-49bf-9a95-15db74fcd460
                Copyright: © Neural Regeneration Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 25 April 2018
                Categories
                Research Article

                nerve regeneration,spinal cord injury,myelotomy,locomotor recovery,rats,rehabilitation,moderate injury,randomized controlled trials,systematic review,meta-analysis,neural regeneration

                Comments

                Comment on this article