12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinguishing Different Emotions Evoked by Music via Electroencephalographic Signals

      research-article
      1 , , 2
      Computational Intelligence and Neuroscience
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Music can evoke a variety of emotions, which may be manifested by distinct signals on the electroencephalogram (EEG). Many previous studies have examined the associations between specific aspects of music, including the subjective emotions aroused, and EEG signal features. However, no study has comprehensively examined music-related EEG features and selected those with the strongest potential for discriminating emotions. So, this paper conducted a series of experiments to identify the most influential EEG features induced by music evoking different emotions (calm, joy, sad, and angry). We extracted 27-dimensional features from each of 12 electrode positions then used correlation-based feature selection method to identify the feature set most strongly related to the original features but with lowest redundancy. Several classifiers, including Support Vector Machine (SVM), C4.5, LDA, and BPNN, were then used to test the recognition accuracy of the original and selected feature sets. Finally, results are analyzed in detail and the relationships between selected feature set and human emotions are shown clearly. Through the classification results of 10 random examinations, it could be concluded that the selected feature sets of Pz are more effective than other features when using as the key feature set to classify human emotion statues.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Measuring the strangeness of strange attractors

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EEG dynamics in patients with Alzheimer's disease.

            Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive and intellectual deficits and behavior disturbance. The electroencephalogram (EEG) has been used as a tool for diagnosing AD for several decades. The hallmark of EEG abnormalities in AD patients is a shift of the power spectrum to lower frequencies and a decrease in coherence of fast rhythms. These abnormalities are thought to be associated with functional disconnections among cortical areas resulting from death of cortical neurons, axonal pathology, cholinergic deficits, etc. This article reviews main findings of EEG abnormalities in AD patients obtained from conventional spectral analysis and nonlinear dynamical methods. In particular, nonlinear alterations in the EEG of AD patients, i.e. a decreased complexity of EEG patterns and reduced information transmission among cortical areas, and their clinical implications are discussed. For future studies, improvement of the accuracy of differential diagnosis and early detection of AD based on multimodal approaches, longitudinal studies on nonlinear dynamics of the EEG, drug effects on the EEG dynamics, and linear and nonlinear functional connectivity among cortical regions in AD are proposed to be investigated. EEG abnormalities of AD patients are characterized by slowed mean frequency, less complex activity, and reduced coherences among cortical regions. These abnormalities suggest that the EEG has utility as a valuable tool for differential and early diagnosis of AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm.

              This paper addresses the emotion recognition problem from electroencephalogram signals, in which emotions are represented on the valence and arousal dimensions. Fast Fourier transform analysis is used to extract features and the feature selection based on Pearson correlation coefficient is applied. This paper proposes a probabilistic classifier based on Bayes' theorem and a supervised learning using a perceptron convergence algorithm. To verify the proposed methodology, we use an open database. An emotion is defined as two-level class and three-level class in both valence and arousal dimensions. For the two-level class case, the average accuracy of the valence and arousal estimation is 70.9% and 70.1%, respectively. For the three-level class case, the average accuracy is 55.4% and 55.2%, respectively.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Intell Neurosci
                Comput Intell Neurosci
                CIN
                Computational Intelligence and Neuroscience
                Hindawi
                1687-5265
                1687-5273
                2019
                6 March 2019
                : 2019
                : 3191903
                Affiliations
                1School of Automation Engineering, Northeast Electric Power University, Jilin, China
                2Luneng New Energy (Group) Co., Beijing, China
                Author notes

                Guest Editor: Anastassia Angelopoulou

                Author information
                http://orcid.org/0000-0002-9198-2462
                http://orcid.org/0000-0002-3258-6160
                Article
                10.1155/2019/3191903
                6431402
                30956655
                3577d684-5ba9-4b3e-a56b-254d825cc449
                Copyright © 2019 Yimin Hou and Shuaiqi Chen.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 October 2018
                : 25 December 2018
                : 28 January 2019
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article