6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rhynchophylline attenuates allergic bronchial asthma by inhibiting transforming growth factor-β1-mediated Smad and mitogen-activated protein kinase signaling transductions in vivo and in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rhynchophylline (Rhy) is a major active component of Uncaria rhynchophylla and exhibits the potential to inhibit the proliferation of airway smooth muscle cells (ASMCs). In the current study, it was hypothesized that Rhy serves a key role in the anti-asthma effect of Uncaria rhynchophylla by inhibiting transforming growth factor-β1 (TGF-β1)-mediated activation of Smad and mitogen-activated protein kinase (MAPK) signaling. Allergic asthma was induced in mice using ovalbumin (OVA), and the effect of Rhy treatment on inflammatory and allergic responses in the bronchoalveolar lavage fluid (BALF) and serum of mice was determined. Subsequently, the changes in TGF-β1-induced Smad and MAPK signaling following Rhy administration were detected to determine the mechanism associated with this treatment. In addition, TGF-β1 was employed to induce hyperplasia of ASMCs, and the effect of Rhy on proliferation of ASMCs, and Smad and MAPK signaling in vitro was also assessed. The administration of Rhy attenuated the recruitment of eosinophils in BALF induced by OVA, which was associated with the suppressed production of immunoglobulin E, interleukin (IL)-13, IL-4 and IL-5. At the molecular level, the administration of Rhy suppressed the expression levels of TGF-β1, Smad4, p-Smad2 and p-Smad3, while it induced the expression of Smad7, indicating the inhibitory effect of Rhy on TGF-β1-mediated Smad and MAPK signaling. Furthermore, Rhy inhibited the proliferation of ASMCs and, similar to the results of the in vivo assay, it blocked the pro-hyperplasia signaling transduction in vitro. In conclusion, the current study demonstrated the anti-asthma effect of Rhy, which depended on the inhibition of TGF-β1-mediated Smad and MAPK signaling.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro.

          The mechanism by which TGF-β regulates renal inflammation and fibrosis is largely unclear; however, it is well accepted that its biological effects are mediated through Smad2 and Smad3 phosphorylation. Following activation, these Smads form heteromeric complex with Smad4 and translocate into the nucleus to bind and regulate the expression of target genes. Here we studied the roles of Smad4 to regulate TGF-β signaling in a mouse model of unilateral ureteral obstruction using conditional Smad4 knockout mice and in isolated Smad4 mutant macrophages and fibroblasts. Disruption of Smad4 significantly enhanced renal inflammation as evidenced by a greater CD45(+) leukocyte and F4/80(+) macrophage infiltration and upregulation of IL-1β, TNF-α, MCP-1, and ICAM-1 in the obstructed kidney and in IL-1β-stimulated macrophages. In contrast, deletion of Smad4 inhibited renal fibrosis and TGF-β1-induced collagen I expression by fibroblasts. Further studies showed that the loss of Smad4 repressed Smad7 transcription, leading to a loss of functional protein. This, in turn, inhibited IκBα expression but enhanced NF-κB activation, thereby promoting renal inflammation. Interestingly, deletion of Smad4 influenced Smad3-mediated promoter activities and the binding of Smad3 to the COL1A2 promoter, but not Smad3 phosphorylation and nuclear translocation, thereby inhibiting the fibrotic response. Thus, Smad4 may be a key regulator for the diverse roles of TGF-β1 in inflammation and fibrogenesis by interacting with Smad7 and Smad3 to influence their transcriptional activities in renal inflammation and fibrosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline.

            The pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline extracted from Uncaria rhynchophylla Miq Jacks were reviewed. The alkaloids mainly act on cardiovascular system and central nervous system including the hypotension, brachycardia, antiarrhythmia, and protection of cerebral ischemia and sedation. The active mechanisms were related to blocking of calcium channel, opening of potassium channel, and regulating of nerve transmitters transport and metabolism, etc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              TGF-β1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases

              Background Airway remodeling in asthma is the result of increased expression of connective tissue proteins, airway smooth muscle cell (ASMC) hyperplasia and hypertrophy. TGF-β1 has been found to increase ASMC proliferation. The activation of mitogen-activated protein kinases (MAPKs), p38, ERK, and JNK, is critical to the signal transduction associated with cell proliferation. In the present study, we determined the role of phosphorylated MAPKs in TGF-β1 induced ASMC proliferation. Methods Confluent and growth-arrested bovine ASMCs were treated with TGF-β1. Proliferation was measured by [3H]-thymidine incorporation and cell counting. Expressions of phosphorylated p38, ERK1/2, and JNK were determined by Western analysis. Results In a concentration-dependent manner, TGF-β1 increased [3H]-thymidine incorporation and cell number of ASMCs. TGF-β1 also enhanced serum-induced ASMC proliferation. Although ASMCs cultured with TGF-β1 had a significant increase in phosphorylated p38, ERK1/2, and JNK, the maximal phosphorylation of each MAPK had a varied onset after incubation with TGF-β1. TGF-β1 induced DNA synthesis was inhibited by SB 203580 or PD 98059, selective inhibitors of p38 and MAP kinase kinase (MEK), respectively. Antibodies against EGF, FGF-2, IGF-I, and PDGF did not inhibit the TGF-β1 induced DNA synthesis. Conclusion Our data indicate that ASMCs proliferate in response to TGF-β1, which is mediated by phosphorylation of p38 and ERK1/2. These findings suggest that TGF-β1 which is expressed in airways of asthmatics may contribute to irreversible airway remodeling by enhancing ASMC proliferation.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                January 2019
                31 October 2018
                31 October 2018
                : 17
                : 1
                : 251-259
                Affiliations
                [1 ]Department of Medical Affairs, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
                [2 ]Department of Pharmacology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
                [3 ]Department of Clinical Pharmacology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
                [4 ]Department of Nursing, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
                Author notes
                Correspondence to: Dr Guanghua Zhou, Department of Nursing, Jining No. 1 People's Hospital, 6 Jiankang Road, Jining, Shandong 272011, P.R. China, E-mail: jjyyzgh2017@ 123456163.com
                [*]

                Contributed equally

                Article
                ETM-0-0-6909
                10.3892/etm.2018.6909
                6307401
                30651790
                35861987-94c4-49b7-86b9-42fce1972d94
                Copyright: © Wang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 25 January 2018
                : 10 August 2018
                Categories
                Articles

                Medicine
                asthma,rhynchophylline,mitogen-activated protein kinase,smad,transforming growth factor-β1

                Comments

                Comment on this article