42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Excessive sympathoadrenal activation in critical illness contributes directly to organ damage, and high concentrations of catecholamines damage the vascular endothelium. This study investigated associations between potential drivers of sympathoadrenal activation, circulating catecholamines and biomarkers of endothelial damage and outcome in ST segment elevation myocardial infarction (STEMI)-patients, hypothesizing that the catecholamine surge would reflect shock degree and correlate with biomarkers of endothelial damage.

          Methods

          This was a prospective study of 678 consecutive STEMI-patients admitted to a single high-volume invasive heart centre for primary percutaneous coronary intervention (pPCI) from September 2006 to July 2008. Blood samples were drawn immediately before pPCI. Plasma adrenaline, noradrenaline, syndecan-1 and thrombomodulin were measured retrospectively with complete data in 571 patients (84%). Median follow-up time was 28 (IQR 23 to 34) months. Follow-up was 99.7% complete. Outcomes were all-cause and cardiovascular mortality, re-myocardial infarction and admission due to heart failure.

          Results

          Circulating noradrenaline and adrenaline correlated weakly but independently with syndecan-1 (rho = 0.15 and rho = 0.13, both P <0.01) and thrombomodulin (rho = 0.11 and rho = 0.17, both P <0.01), biomarkers of glycocalyx and endothelial cell damage, respectively. Considering biomarkers, patients with shock pre-pPCI had higher adrenaline and syndecan-1 and patients admitted to ICU post-pPCI had higher syndecan-1 (all P <0.05), and in the patients with shock ( n = 51) catecholamines correlated strongly with thrombomodulin and syndecan-1 (rho = 0.31 to 0.42, all P <0.05). During follow-up, 78 (14%) patients died (37 cardiovascular deaths) and 65 (11%) were admitted with heart failure. By multivariate Cox proportional hazards analyses, one quartile higher plasma adrenaline was weakly but independently associated with both 30-day and long term mortality and heart failure (30-day all-cause mortality hazard ratio (95% CI) 1.39 (1.01 to 1.92), P = 0.046; 30-day heart failure 1.65 (1.17 to 2.34), P = 0.005; and long-term cardiovascular mortality 1.49 (1.08 to 2.04), P = 0.014). Furthermore, one quartile higher syndecan-1 was also weakly but independently associated with long-term all cause mortality (1.26 (1.02 to 1.57), P = 0.034).

          Conclusions

          In STEMI patients treated with pPCI, catecholamines correlated weakly with biomarkers of endothelial damage, with the strongest correlations and highest adrenaline and syndecan-1 levels in patients with shock. Furthermore, adrenaline and syndecan-1 were weakly but independently associated with mortality and heart failure. Acute myocardial infarction appears to cause significant endothelial cell and glycocalyx injury and a parallel increase in circulating catecholamines.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Myocardial infarction accelerates atherosclerosis

          SUMMARY During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaque in the arterial wall and cause its rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, apoE−/− mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. When seeking the source of surplus monocytes in plaque, we found that myocardial infarction liberated hematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signaling. The progenitors then seeded the spleen yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications.

            Heart failure is a syndrome characterized initially by left ventricular dysfunction that triggers countermeasures aimed to restore cardiac output. These responses are compensatory at first but eventually become part of the disease process itself leading to further worsening cardiac function. Among these responses is the activation of the sympathetic nervous system (SNS) that provides inotropic support to the failing heart increasing stroke volume, and peripheral vasoconstriction to maintain mean arterial perfusion pressure, but eventually accelerates disease progression affecting survival. Activation of SNS has been attributed to withdrawal of normal restraining influences and enhancement of excitatory inputs including changes in: 1) peripheral baroreceptor and chemoreceptor reflexes; 2) chemical mediators that control sympathetic outflow; and 3) central integratory sites. The interface between the sympathetic fibers and the cardiovascular system is formed by the adrenergic receptors (ARs). Dysregulation of cardiac beta(1)-AR signaling and transduction are key features of heart failure progression. In contrast, cardiac beta(2)-ARs and alpha(1)-ARs may function in a compensatory fashion to maintain cardiac inotropy. Adrenergic receptor polymorphisms may have an impact on the adaptive mechanisms, susceptibilities, and pharmacological responses of SNS. The beta-AR blockers and the inhibitors of the renin-angiotensin-aldosterone axis form the mainstay of current medical management of chronic heart failure. Conversely, central sympatholytics have proved harmful, whereas sympathomimetic inotropes are still used in selected patients with hemodynamic instability. This review summarizes the changes in SNS in heart failure and examines how modulation of SNS activity may affect morbidity and mortality from this syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients.

              To investigate the association between markers of acute endothelial glycocalyx degradation, inflammation, coagulopathy, and mortality after trauma. Hyperinflammation and acute coagulopathy of trauma predict increased mortality. High catecholamine levels can directly damage the endothelium and may be associated with enhanced endothelial glycocalyx degradation, evidenced by high circulating syndecan-1. Prospective cohort study of trauma patients admitted to a Level 1 Trauma Centre in 2003 to 2005. Seventy-five patients were selected blindly post hoc from 3 predefined injury severity score (ISS) groups ( 27). In all patients, we measured 17 markers of glycocalyx degradation, inflammation, tissue and endothelial damage, natural anticoagulation, and fibrinolysis (syndecan-1, IL-6, IL-10, histone-complexed DNA fragments, high-mobility group box 1 (HMGB1), thrombomodulin, von Willebrand factor, intercellular adhesion molecule-1, E-selectin, protein C, tissue factor pathway inhibitor (TFPI), antithrombin, D-dimer, tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), soluble uPA receptor, and plasminogen activator inhibitor-1), hematology, coagulation, catecholamines, and assessed 30-day mortality. Variables were compared in patients stratified according to syndecan-1 median. Patients with high circulating syndecan-1 had higher catecholamines, IL-6, IL-10, histone-complexed DNA fragments, HMGB1, thrombomodulin, D-dimer, tPA, uPA (all P < 0.05), and 3-fold increased mortality (42% vs. 14%, P = 0.006) despite comparable ISS (P = 0.351). Only in patients with high glycocalyx degradation was higher ISS correlated with higher adrenaline, IL-6, histone-complexed DNA fragments, HMGB1, thrombomodulin, and APTT, lower protein C (all P < 0.05), unchanged TFPI and blunted D-dimer response (P < 0.001) because D-dimer was profoundly increased even at low ISS. After adjusting for age and ISS, syndecan-1 was an independent predictor of mortality (OR: 1.01 [95%CI, 1.00-1.02]; P = 0.043). In trauma patients, high circulating syndecan-1, a marker of endothelial glycocalyx degradation, is associated with inflammation, coagulopathy and increased mortality.
                Bookmark

                Author and article information

                Contributors
                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2013
                22 February 2013
                : 17
                : 1
                : R32
                Affiliations
                [1 ]Section for Transfusion Medicine at Capital Region Blood Bank, Rigshospitalet, Blegdamsvej 9, Copenhagen, DK-2100, Denmark
                [2 ]Department of Cardiology P, Gentofte Hospital, Niels Andersens Vej 65, Hellerup, DK-2900, Denmark
                [3 ]Clinical Institute of Surgery and Internal Medicine, Faculty of Health Science at University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
                [4 ]Department of Cardiology, Rigshospitalet, Blegdamsvej 9, Copenhagen, DK-2100, Denmark
                [5 ]Department of Surgery, Center for Translational Injury Research (CeTIR) at University of Texas Medical School at Houston, 6410 Fannin Street, Houston, TX 77030, USA
                Article
                cc12532
                10.1186/cc12532
                4057225
                23433357
                358ea86c-08f1-43b0-8400-2a404337ae92
                Copyright © 2013 Ostrowski et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 November 2012
                : 28 January 2013
                : 19 February 2013
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article