35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiscale Event Detection in Social Media

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Event detection has been one of the most important research topics in social media analysis. Most of the traditional approaches detect events based on fixed temporal and spatial resolutions, while in reality events of different scales usually occur simultaneously, namely, they span different intervals in time and space. In this paper, we propose a novel approach towards multiscale event detection using social media data, which takes into account different temporal and spatial scales of events in the data. Specifically, we explore the properties of the wavelet transform, which is a well-developed multiscale transform in signal processing, to enable automatic handling of the interaction between temporal and spatial scales. We then propose a novel algorithm to compute a data similarity graph at appropriate scales and detect events of different scales simultaneously by a single graph-based clustering process. Furthermore, we present spatiotemporal statistical analysis of the noisy information present in the data stream, which allows us to define a novel term-filtering procedure for the proposed event detection algorithm and helps us study its behavior using simulated noisy data. Experimental results on both synthetically generated data and real world data collected from Twitter demonstrate the meaningfulness and effectiveness of the proposed approach. Our framework further extends to numerous application domains that involve multiscale and multiresolution data analysis.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Modularity and community structure in networks

          M. Newman (2006)
          Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Tutorial on Spectral Clustering

            In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Earthquake shakes Twitter users

                Bookmark

                Author and article information

                Journal
                2014-04-25
                2015-02-05
                Article
                10.1007/s10618-015-0421-2
                1404.7048
                35a82e26-a1a3-4241-9f5b-7c0e34270670

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Data Mining and Knowledge Discovery, vol. 29, no. 5, pp. 1374-1405, September 2015
                cs.SI cs.LG physics.soc-ph stat.ML

                Social & Information networks,General physics,Machine learning,Artificial intelligence

                Comments

                Comment on this article