31
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CTX-M-15 is established in most multidrug-resistant uropathogenic Enterobacteriaceae and Pseudomonaceae from hospitals in Nigeria

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          β-Lactam antibiotics are widely used to treat urinary tract infections in Nigeria. This study aimed to determine the presence and characteristics of extended spectrum β-lactamases in commonly isolated uropathogenic Gram-negative bacteria (GNB) in Nigeria.

          Fifty non-duplicate GNB isolates consisting of Escherichia coli, 19; Klebsiella pneumoniae, 21; and Pseudomonas aeruginosa, 10 were obtained from three tertiary hospitals in Nigeria. The antibiotic susceptibility testing of all isolates to a panel of antibiotics including minimum inhibitory concentrations (MICs) and extended spectrum β-lactamases was determined. Polymerase chain reactions and sequencing were used to detect β-lactam genes.

          Polymerase chain reactions and sequencing identified varying extended spectrum β-lactamases (ESBLs) encoding genes for 24 isolates (48.0%). Cefotaximase-Munich (CTX-M) 15 was the dominant gene with 20/24 of the isolates positive at 83.3%; multiple genes (2 to 6 ESBL genes) were found in 20 of the isolates. The isolates encoded other genes such as CTX-M-14, 33.3%; sulfhydryl variable (SHV) variants, 58.3%; oxacillinase (OXA) variants, 70.8%; OXA-10, 29.2%; and Vietnamese extended β-lactamase (VEB) 1, 25.0%. There was no difference between the MIC 50 and MIC 90 of all the isolates.

          The high-level multidrug resistance of uropathogens to third generation cephalosporins including other antibiotics used in this study is strongly associated with carriage of ESBLs, predominantly CTX-M-15, as well as CTX-X-M-14, OXA-10, and VEB-1.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern.

          The medical community relies on clinical expertise and published guidelines to assist physicians with choices in empirical therapy for system-based infectious syndromes, such as community-acquired pneumonia and urinary-tract infections (UTIs). From the late 1990s, multidrug-resistant Enterobacteriaceae (mostly Escherichia coli) that produce extended-spectrum beta lactamases (ESBLs), such as the CTX-M enzymes, have emerged within the community setting as an important cause of UTIs. Recent reports have also described ESBL-producing E coli as a cause of bloodstream infections associated with these community-onset UTIs. The carbapenems are widely regarded as the drugs of choice for the treatment of severe infections caused by ESBL-producing Enterobacteriaceae, although comparative clinical trials are scarce. Thus, more rapid diagnostic testing of ESBL-producing bacteria and the possible modification of guidelines for community-onset bacteraemia associated with UTIs are required.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Resistance plasmid families in Enterobacteriaceae.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria.

              β-Lactamase evolution presents to the infectious disease community a major challenge in the treatment of infections caused by multidrug-resistant gram-negative bacteria. Because over 1,000 of these naturally occurring β-lactamases exist, attempts to correlate structure and function have become daunting. Although new enzymes in the extended-spectrum β-lactamase (ESBL) families are frequently identified, the older CTX-M-14 and CTX-M-15 enzymes have become the most prevalent ESBLs in global surveillance. Carbapenemases with either serine-based or zinc-facilitated hydrolysis mechanisms are posing some of the most critical problems. Most geographical regions now report KPC serine carbapenemases and the metallo-β-lactamases VIM, IMP, and NDM-1, even though NDM-1 was only recently identified. The rapid emergence of these newer enzymes, with multiple β-lactamases appearing in a single organism, makes the design of new β-lactamase inactivators or β-lactamase-stable β-lactams all the more difficult. Combination therapy will likely be required to counteract the continuing evolution of these insidious enzymes in multidrug-resistant pathogens.
                Bookmark

                Author and article information

                Journal
                1886
                European Journal of Microbiology and Immunology
                EuJMI
                Akadémiai Kiadó
                2062-8633
                March 2018
                : 8
                : 1
                : 20-24
                Affiliations
                [ 1 ]Department of Biomedical Sciences, Ladoke Akintola University of Technology , Ogbomoso, Osogbo Campus, Nigeria
                [ 2 ]Antimicrobials Research Group, Immunity and Infection, Institute of Microbiology and Infection, University of Birmingham , Birmingham, United Kingdom
                Author notes
                [*]

                Corresponding author: David Olusoga Ogbolu; Department of Biomedical Science, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, PMB 4000, Nigeria; Phone: +2347055776547; E-mail: doogbolu@ 123456lautech.edu.ng or olusogadave@ 123456yahoo.com

                Article
                10.1556/1886.2017.00012
                5944422
                35ae44d4-efdb-4e51-811f-1e686bd57935
                © 2018 The Author(s)

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes - if any - are indicated.

                History
                : 21 May 2017
                : 27 June 2017
                Page count
                Pages: 5
                Categories
                Original Research Paper

                Medicine,Immunology,Health & Social care,Microbiology & Virology,Infectious disease & Microbiology
                antibiotics,extended spectrum β-lactamases,Nigeria,uropathogens,resistance

                Comments

                Comment on this article