5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The orphan nuclear receptor LXR  is positively and negatively regulated by distinct products of mevalonate metabolism

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a nuclear receptor that is activated by farnesol metabolites.

          Nuclear hormone receptors comprise a superfamily of ligand-modulated transcription factors that mediate the transcriptional activities of steroids, retinoids, and thyroid hormones. A growing number of related proteins have been identified that possess the structural features of hormone receptors, but that lack known ligands. Known as orphan receptors, these proteins represent targets for novel signaling molecules. We have isolated a mammalian orphan receptor that forms a heterodimeric complex with the retinoid X receptor. A screen of candidate ligands identified farnesol and related metabolites as effective activators of this complex. Farnesol metabolites are generated intracellularly and are required for the synthesis of cholesterol, bile acids, steroids, retinoids, and farnesylated proteins. Intermediary metabolites have been recognized as transcriptional regulators in bacteria and yeast. Our results now suggest that metabolite-controlled intracellular signaling systems are utilized by higher organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis.

            Sterol regulatory element-binding protein 1 (SREBP-1), a member of the basic-helix-loop-helix-leucine zipper (bHLH-ZIP) family of transcription factors, is synthesized as a 125 kd precursor that is attached to the nuclear envelope and endoplasmic reticulum. In sterol-depleted cells, the membrane-bound precursor is cleaved to generate a soluble NH2-terminal fragment (apparent molecular mass, 68 kd) that translocates to the nucleus. This fragment, which includes the bHLH-ZIP domain, activates transcription of the genes for the LDL receptor and HMG CoA synthase. Sterols inhibit the cleavage of SREBP-1, and the 68 kd nuclear form is rapidly catabolized, thereby reducing transcription. ALLN, an inhibitor of neutral cysteine proteases, blocks the breakdown of the 68 kd form and superinduces sterol-regulated genes. Sterol-regulated proteolysis of a membrane-bound transcription factor provides a novel mechanism by which transcription can be regulated by membrane lipids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional ecdysone receptor is the product of EcR and Ultraspiracle genes.

              Although the biological activity of the insect moulting hormone ecdysone, is manifested through a hormonally regulated transcriptional cascade associated with chromosomal puffing, a direct association of the receptor with the puff has yet to be established. The cloned ecdysone receptor (EcR) is by itself incapable of high-affinity DNA binding or transcriptional activation. Rather, these activities are dependent on heterodimer formation with Ultraspiracle (USP) the insect homologue of vertebrate retinoid X receptor. Here we report that native EcR and USP are co-localized on ecdysone-responsive loci of polytene chromosomes. Moreover, we show that natural ecdysones selectively promote physical association between EcR and USP, and conversely, that high-affinity hormone binding requires both EcR and USP. Replacement of USP with retinoid X receptor produces heterodimers with distinct pharmacological and functional properties. These results redefine the ecdysone receptor as a dynamic complex whose activity may be altered by combinatorial interactions among subunits and ligand.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 30 1997
                September 30 1997
                : 94
                : 20
                : 10588-10593
                Article
                10.1073/pnas.94.20.10588
                35bc3abe-f964-48f4-8752-5910649aa6e9
                © 1997
                History

                Comments

                Comment on this article