7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Non-adiabatic spin-torques in narrow magnetic domain walls

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic domain-wall racetrack memory.

          Recent developments in the controlled movement of domain walls in magnetic nanowires by short pulses of spin-polarized current give promise of a nonvolatile memory device with the high performance and reliability of conventional solid-state memory but at the low cost of conventional magnetic disk drive storage. The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip. Individual spintronic reading and writing nanodevices are used to modify or read a train of approximately 10 to 100 domain walls, which store a series of data bits in each nanowire. This racetrack memory is an example of the move toward innately three-dimensional microelectronic devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Magnetic domain-wall logic.

            "Spintronics," in which both the spin and charge of electrons are used for logic and memory operations, promises an alternate route to traditional semiconductor electronics. A complete logic architecture can be constructed, which uses planar magnetic wires that are less than a micrometer in width. Logical NOT, logical AND, signal fan-out, and signal cross-over elements each have a simple geometric design, and they can be integrated together into one circuit. An additional element for data input allows information to be written to domain-wall logic circuits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current-induced domain-wall switching in a ferromagnetic semiconductor structure.

              Magnetic information storage relies on external magnetic fields to encode logical bits through magnetization reversal. But because the magnetic fields needed to operate ultradense storage devices are too high to generate, magnetization reversal by electrical currents is attracting much interest as a promising alternative encoding method. Indeed, spin-polarized currents can reverse the magnetization direction of nanometre-sized metallic structures through torque; however, the high current densities of 10(7)-10(8) A cm(-2) that are at present required exceed the threshold values tolerated by the metal interconnects of integrated circuits. Encoding magnetic information in metallic systems has also been achieved by manipulating the domain walls at the boundary between regions with different magnetization directions, but the approach again requires high current densities of about 10(7) A cm(-2). Here we demonstrate that, in a ferromagnetic semiconductor structure, magnetization reversal through domain-wall switching can be induced in the absence of a magnetic field using current pulses with densities below 10(5) A cm(-2). The slow switching speed and low ferromagnetic transition temperature of our current system are impractical. But provided these problems can be addressed, magnetic reversal through electric pulses with reduced current densities could provide a route to magnetic information storage applications.
                Bookmark

                Author and article information

                Journal
                Nature Physics
                Nat Phys
                Springer Nature
                1745-2473
                1745-2481
                November 8 2009
                November 8 2009
                : 6
                : 1
                : 17-21
                Article
                10.1038/nphys1436
                35c03ac6-01ff-4d60-93cc-f3eb3a365def
                © 2009
                History

                Comments

                Comment on this article