232
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCC mec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCC mec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements.

          Related collections

          Most cited references260

          • Record: found
          • Abstract: found
          • Article: not found

          Methicillin-resistant S. aureus infections among patients in the emergency department.

          Methicillin-resistant Staphylococcus aureus (MRSA) is increasingly recognized in infections among persons in the community without established risk factors for MRSA. We enrolled adult patients with acute, purulent skin and soft-tissue infections presenting to 11 university-affiliated emergency departments during the month of August 2004. Cultures were obtained, and clinical information was collected. Available S. aureus isolates were characterized by antimicrobial-susceptibility testing, pulsed-field gel electrophoresis, and detection of toxin genes. On MRSA isolates, we performed typing of the staphylococcal cassette chromosome mec (SCCmec), the genetic element that carries the mecA gene encoding methicillin resistance. S. aureus was isolated from 320 of 422 patients with skin and soft-tissue infections (76 percent). The prevalence of MRSA was 59 percent overall and ranged from 15 to 74 percent. Pulsed-field type USA300 isolates accounted for 97 percent of MRSA isolates; 74 percent of these were a single strain (USA300-0114). SCCmec type IV and the Panton-Valentine leukocidin toxin gene were detected in 98 percent of MRSA isolates. Other toxin genes were detected rarely. Among the MRSA isolates, 95 percent were susceptible to clindamycin, 6 percent to erythromycin, 60 percent to fluoroquinolones, 100 percent to rifampin and trimethoprim-sulfamethoxazole, and 92 percent to tetracycline. Antibiotic therapy was not concordant with the results of susceptibility testing in 100 of 175 patients with MRSA infection who received antibiotics (57 percent). Among methicillin-susceptible S. aureus isolates, 31 percent were USA300 and 42 percent contained pvl genes. MRSA is the most common identifiable cause of skin and soft-tissue infections among patients presenting to emergency departments in 11 U.S. cities. When antimicrobial therapy is indicated for the treatment of skin and soft-tissue infections, clinicians should consider obtaining cultures and modifying empirical therapy to provide MRSA coverage. Copyright 2006 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA).

            Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-acquired infections that are becoming increasingly difficult to combat because of emerging resistance to all current antibiotic classes. The evolutionary origins of MRSA are poorly understood, no rational nomenclature exists, and there is no consensus on the number of major MRSA clones or the relatedness of clones described from different countries. We resolve all of these issues and provide a more thorough and precise analysis of the evolution of MRSA clones than has previously been possible. Using multilocus sequence typing and an algorithm, BURST, we analyzed an international collection of 912 MRSA and methicillin-susceptible S. aureus (MSSA) isolates. We identified 11 major MRSA clones within five groups of related genotypes. The putative ancestral genotype of each group and the most parsimonious patterns of descent of isolates from each ancestor were inferred by using BURST, which, together with analysis of the methicillin resistance genes, established the likely evolutionary origins of each major MRSA clone, the genotype of the original MRSA clone and its MSSA progenitor, and the extent of acquisition and horizontal movement of the methicillin resistance genes. Major MRSA clones have arisen repeatedly from successful epidemic MSSA strains, and isolates with decreased susceptibility to vancomycin, the antibiotic of last resort, are arising from some of these major MRSA clones, highlighting a depressing progression of increasing drug resistance within a small number of ecologically successful S. aureus genotypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus.

              Staphylococcal cassette chromosome mec (SCCmec) typing is essential for understanding the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA). SCCmec elements are currently classified into types I to V based on the nature of the mec and ccr gene complexes, and are further classified into subtypes according to their junkyard region DNA segments. Previously described traditional SCCmec PCR typing schemes require multiple primer sets and PCR experiments, while a previously published multiplex PCR assay is limited in its ability to detect recently discovered types and subtypes such as SCCmec type V and subtypes IVa, b, c, and d. We designed new sets of SCCmec type- and subtype-unique and specific primers and developed a novel multiplex PCR assay allowing for concomitant detection of the methicillin resistance (mecA gene) (also serving as an internal control) to facilitate detection and classification of all currently described SCCmec types and subtypes I, II, III, IVa, b, c, d, and V. Our assay demonstrated 100% sensitivity and specificity in accurately characterizing 54 MRSA strains belonging to the various known SCCmec types and subtypes, when compared with previously described typing methods. Further application of our assay in 453 randomly selected local clinical isolates confirmed its feasibility and practicality. This novel assay offers a rapid, simple, and feasible method for SCCmec typing of MRSA, and may serve as a useful tool for clinicians and epidemiologists in their efforts to prevent and control infections caused by this organism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                6 April 2011
                : 6
                : 4
                : e17936
                Affiliations
                [1 ]Institute for Medical Microbiology and Hygiene, Technical University of Dresden, Dresden, Germany
                [2 ]Department of Microbiology and Infectious Diseases, PathWest Laboratory Medicine - WA, Royal Perth Hospital, Perth, Western Australia, Australia
                [3 ]Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College, Dublin, Ireland
                [4 ]Department of Para-Clinical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
                [5 ]Infection Control Unit, Mater Dei Hospital, Msida, Malta
                [6 ]Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
                [7 ]Infection Control Unit, Dresden University Hospital, Dresden, Germany
                [8 ]Department of Environmental Health Sciences, Freiburg University Medical Centre, Freiburg, Germany
                [9 ]Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
                [10 ]Staphylococcus Reference Unit, Centre for Infections, Health Protection Agency, London, United Kingdom
                [11 ]Université Lyon, Centre National de Référence des Staphylocoques, Lyon, France
                [12 ]School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
                [13 ]Alere Technologies GmbH, Jena, Germany
                [14 ]Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
                Columbia University, United States of America
                Author notes

                Conceived and designed the experiments: SM PS RE. Performed the experiments: AR HC KK JP H-LT. Analyzed the data: SM GC ACS DCC FGO SS RE. Contributed reagents/materials/analysis tools: SM GC ACS DCC FGO SS KK PA MB MI LJ DJ AK FL ES SW. Wrote the paper: SM GC ACS DCC RE.

                Article
                PONE-D-10-04419
                10.1371/journal.pone.0017936
                3071808
                21494333
                35c21819-f3d6-4a63-9aca-02f20299b6c7
                Monecke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 November 2010
                : 16 February 2011
                Page count
                Pages: 24
                Categories
                Research Article
                Biology
                Microbiology
                Bacterial Pathogens
                Gram Positive
                Staphylococci
                Medical Microbiology
                Medicine
                Epidemiology
                Molecular Epidemiology
                Infectious Diseases
                Bacterial Diseases
                Methicillin-resistant Staphylococcus aureus
                Panton-Valentine leukocidin
                Staph Infections
                Staphylococcus Aureus
                Infectious Disease Control
                Veterinary Science
                Veterinary Microbiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article