19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CD109 is identified as a potential nasopharyngeal carcinoma biomarker using aptamer selected by cell-SELEX

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nasopharyngeal carcinoma (NPC) is one of the most prevailing cancers in southern China and southern Asia. Because of the nonspecific symptoms and lack of effective biomarker, most patients are diagnosed at advanced stages, resulting in poor 5-year survival rate. To identify a novel NPC biomarker facilitating early detection and effective therapy of NPC, a two-step strategy consisting of cancer cell-Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) procedure and aptamer-based purification approach was developed. Using cell-SELEX procedure, four aptamers (S3, S5, S12 and S27) differentiating the molecular differences between NPC cells and NP cells were successfully screened. Then, using aptamer-based protein purification, membrane protein CD109 was identified as the target of aptamer S3. CD109 protein was further identified to be over-expressed in NPC cell lines and clinic tissues, but not or low in NP cell line and clinic NP tissues, detected by western blot and immunohistochemistry experiments. Our study demonstrated that CD109 identified by cell-SELEX and aptamer-based purification strategy might be used as a potential NPC biomarker for early diagnosis and targeted therapy.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.

          L Gold, C Tuerk (1990)
          High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species. Multiple rounds exponentially enrich the population for the highest affinity species that can be clonally isolated and characterized. In particular one eight-base region of an RNA that interacts with the T4 DNA polymerase was chosen and randomized. Two different sequences were selected by this procedure from the calculated pool of 65,536 species. One is the wild-type sequence found in the bacteriophage mRNA; one is varied from wild type at four positions. The binding constants of these two RNA's to T4 DNA polymerase are equivalent. These protocols with minimal modification can yield high-affinity ligands for any protein that binds nucleic acids as part of its function; high-affinity ligands could conceivably be developed for any target molecule.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of DNA aptamers using Cell-SELEX.

            In the past two decades, high-affinity nucleic acid aptamers have been developed for a wide variety of pure molecules and complex systems such as live cells. Conceptually, aptamers are developed by an evolutionary process, whereby, as selection progresses, sequences with a certain conformation capable of binding to the target of interest emerge and dominate the pool. This protocol, cell-SELEX (systematic evolution of ligands by exponential enrichment), is a method that can generate DNA aptamers that can bind specifically to a cell type of interest. Commonly, a cancer cell line is used as the target to generate aptamers that can differentiate that cell type from other cancers or normal cells. A single-stranded DNA (ssDNA) library pool is incubated with the target cells. Nonbinding sequences are washed off and bound sequences are recovered from the cells by heating cell-DNA complexes at 95 degrees C, followed by centrifugation. The recovered pool is incubated with the control cell line to filter out the sequences that bind to common molecules on both the target and the control, leading to the enrichment of specific binders to the target. Binding sequences are amplified by PCR using fluorescein isothiocyanate-labeled sense and biotin-labeled antisense primers. This is followed by removal of antisense strands to generate an ssDNA pool for subsequent rounds of selection. The enrichment of the selected pools is monitored by flow cytometry binding assays, with selected pools having increased fluorescence compared with the unselected DNA library. The procedure, from design of oligonucleotides to enrichment of the selected pools, takes approximately 3 months.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach.

              Molecular medicine is an emerging field focused on understanding the molecular basis of diseases and translating this information into strategies for diagnosis and therapy. This approach could lead to personalized medical treatments. Currently, our ability to understand human diseases at the molecular level is limited by the lack of molecular tools to identify and characterize the distinct molecular features of the disease state, especially for diseases such as cancer. Among the new tools being developed by researchers including chemists, engineers, and other scientists is a new class of nucleic acid probes called aptamers, which are ssDNA/RNA molecules selected to target a wide range of molecules and even cells. In this Account, we will focus on the use of aptamers, generated from cell-based selections, as a novel molecular tool for cancer research. Cancers originate from mutations of human genes. These genetic alterations result in molecular changes to diseased cells, which, in turn, lead to changes in cell morphology and physiology. For decades, clinicians have diagnosed cancers primarily based on the morphology of tumor cells or tissues. However, this method does not always give an accurate diagnosis and does not allow clinicians to effectively assess the complex molecular alterations that are predictive of cancer progression. As genomics and proteomics do not yet allow a full access to this molecular knowledge, aptamer probes represent one effective and practical avenue toward this goal. One special feature of aptamers is that we can isolate them by selection against cancer cells without prior knowledge of the number and arrangement of proteins on the cellular surface. These probes can identify molecular differences between normal and tumor cells and can discriminate among tumor cells of different classifications, at different disease stages, or from different patients. This Account summarizes our recent efforts to develop aptamers through cell-SELEX for the study of cancer and apply those aptamers in cancer diagnosis and therapy. We first discuss how we select aptamers against live cancer cells. We then describe uses of these aptamers. Aptamers can serve as agents for molecular profiling of specific cancer types. They can also be used to modify therapeutic reagents to develop targeted cancer therapies. Aptamers are also aiding the discovery of new cancer biomarkers through the recognition of membrane protein targets. Importantly, we demonstrate how molecular assemblies can integrate the properties of aptamers and, for example, nanoparticles or microfluidic devices, to improve cancer cell enrichment, detection and therapy.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                23 August 2016
                11 July 2016
                : 7
                : 34
                : 55328-55342
                Affiliations
                1 Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, Hunan, P. R. China
                2 Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
                3 Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
                4 Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
                5 Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, P. R. China
                6 Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
                7 Hepatobiliary & Enteric Surgery Research Center, Central South University, Changsha, Hunan, P. R. China
                Author notes
                Correspondence to: Caiping Ren, rencaiping@ 123456csu.edu.cn
                Article
                10530
                10.18632/oncotarget.10530
                5342420
                27419372
                35dc2d13-1330-4299-b8bf-614f76f64b31
                Copyright: © 2016 Jia et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 November 2015
                : 17 May 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                aptamer,cell-selex,nasopharyngeal carcinoma,biomarker discovery,cd109
                Oncology & Radiotherapy
                aptamer, cell-selex, nasopharyngeal carcinoma, biomarker discovery, cd109

                Comments

                Comment on this article