Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

Science (New York, N.Y.)

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of -80 millivolts and a current density of 4.1 milliamps per square centimeter at -0.22 volts, compared with -85 millivolts and 1.1 milliamps per square centimeter at -0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.

      Related collections

      Author and article information

      Journal
      10.1126/science.1168049
      19197058

      Comments

      Comment on this article