13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Manganese Complexes for (De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron Catalysts

      1 , 1
      Angewandte Chemie International Edition
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts.

          One of the main stumbling blocks in developing rational design strategies for heterogeneous catalysis is that the complexity of the catalysts impairs efforts to characterize their active sites. We show how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al(2)O(3) methanol synthesis catalyst by using a combination of experimental evidence from bulk, surface-sensitive, and imaging methods collected on real high-performance catalytic systems in combination with density functional theory calculations. The active site consists of Cu steps decorated with Zn atoms, all stabilized by a series of well-defined bulk defects and surface species that need to be present jointly for the system to work.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils.

            Fast pyrolysis of lignocellulosic biomass produces a renewable liquid fuel called pyrolysis oil that is the cheapest liquid fuel produced from biomass today. Here we show that pyrolysis oils can be converted into industrial commodity chemical feedstocks using an integrated catalytic approach that combines hydroprocessing with zeolite catalysis. The hydroprocessing increases the intrinsic hydrogen content of the pyrolysis oil, producing polyols and alcohols. The zeolite catalyst then converts these hydrogenated products into light olefins and aromatic hydrocarbons in a yield as much as three times higher than that produced with the pure pyrolysis oil. The yield of aromatic hydrocarbons and light olefins from the biomass conversion over zeolite is proportional to the intrinsic amount of hydrogen added to the biomass feedstock during hydroprocessing. The total product yield can be adjusted depending on market values of the chemical feedstocks and the relative prices of the hydrogen and biomass.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Borrowing Hydrogen in the Activation of Alcohols

                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                January 02 2018
                January 02 2018
                December 08 2017
                : 57
                : 1
                : 46-60
                Affiliations
                [1 ]Inorganic Chemistry II-Catalyst Design; University of Bayreuth; 95440 Bayreuth Germany
                Article
                10.1002/anie.201709010
                35e2a832-5d60-44f4-88ea-8ac234a7088c
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article