19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuro-symbolic representation learning on biological knowledge graphs

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motivation: Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. Availability and Implementation: https://github.com/bio-ontology-research-group/walking-rdf-and-owl Contact: robert.hoehndorf@kaust.edu.sa

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bio2RDF: towards a mashup to build bioinformatics knowledge systems.

            Presently, there are numerous bioinformatics databases available on different websites. Although RDF was proposed as a standard format for the web, these databases are still available in various formats. With the increasing popularity of the semantic web technologies and the ever growing number of databases in bioinformatics, there is a pressing need to develop mashup systems to help the process of bioinformatics knowledge integration. Bio2RDF is such a system, built from rdfizer programs written in JSP, the Sesame open source triplestore technology and an OWL ontology. With Bio2RDF, documents from public bioinformatics databases such as Kegg, PDB, MGI, HGNC and several of NCBI's databases can now be made available in RDF format through a unique URL in the form of http://bio2rdf.org/namespace:id. The Bio2RDF project has successfully applied the semantic web technology to publicly available databases by creating a knowledge space of RDF documents linked together with normalized URIs and sharing a common ontology. Bio2RDF is based on a three-step approach to build mashups of bioinformatics data. The present article details this new approach and illustrates the building of a mashup used to explore the implication of four transcription factor genes in Parkinson's disease. The Bio2RDF repository can be queried at http://bio2rdf.org.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              OWL 2: The next step for OWL

                Bookmark

                Author and article information

                Journal
                2016-12-13
                Article
                1612.04256
                35e8e656-f752-4d4f-9a16-8e73190f3d87

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                q-bio.QM cs.LG q-bio.MN

                Quantitative & Systems biology,Molecular biology,Artificial intelligence
                Quantitative & Systems biology, Molecular biology, Artificial intelligence

                Comments

                Comment on this article