2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model

      , , , ,
      Hydrology and Earth System Sciences
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Seasonal ice cover on lakes and polar seas creates seasonally developing boundary layer at the ice base with specific features: fixed temperature at the solid boundary and stable density stratification beneath. Turbulent transport in the boundary layer determines the ice growth and melting conditions at the ice–water interface, especially in large lakes and marginal seas, where large-scale water circulation can produce highly variable mixing conditions. Since the boundary mixing under ice is difficult to measure, existing models of ice cover dynamics usually neglect or parameterize it in a very simplistic form. We present the first detailed observations on mixing under ice of Lake Baikal, obtained with the help of advanced acoustic methods. The dissipation rate of the turbulent kinetic energy (TKE) was derived from correlations (structure functions) of current velocities within the boundary layer. The range of the dissipation rate variability covered 2 orders of magnitude, demonstrating strongly turbulent conditions. Intensity of mixing was closely connected to the mean speeds of the large-scale under-ice currents. Mixing developed on the background of stable density (temperature) stratification, which affected the vertical structure of the boundary layer. To account for stratification effects, we propose a model of the turbulent energy budget based on the length scale incorporating the dissipation rate and the buoyancy frequency (Dougherty–Ozmidov scaling). The model agrees well with the observations and yields a scaling relationship for the ice–water heat flux as a function of the shear velocity squared. The ice–water heat fluxes in the field were the largest among all reported in lakes (up to 40 W m−2) and scaled well against the proposed relationship. The ultimate finding is that of a strong dependence of the water–ice heat flux on the shear velocity under ice. The result suggests large errors in the heat flux estimations when the traditional “bulk” approach is applied to stratified boundary layers. It also implies that under-ice currents may have much stronger effect on the ice melt than estimated by traditional models.

          Related collections

          Author and article information

          Contributors
          (View ORCID Profile)
          Journal
          Hydrology and Earth System Sciences
          Hydrol. Earth Syst. Sci.
          Copernicus GmbH
          1607-7938
          2020
          April 08 2020
          : 24
          : 4
          : 1691-1708
          Article
          10.5194/hess-24-1691-2020
          35eee7fe-9866-41b8-9f0c-a6c9c7e3a703
          © 2020

          https://creativecommons.org/licenses/by/4.0/

          History

          Comments

          Comment on this article