3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Steroidal but not embryonic regulation of mucin 1 expression in bovine endometrium

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In cow herd management, inadequate embryo implantation leads to pregnancy loss and causes severe economic losses. Thus, it is crucial to understand the molecular mechanisms underlying endometrial receptivity and subsequent embryo implantation. Transmembrane glycocalyx mucin 1 (MUC1) has a large and highly glycosylated extracellular domain known to inhibit embryo implantation via steric hindrance. The role of MUC1 in the bovine endometrium remains to be explored. Herein, we used simple but reliable in vivo and in vitro experiments to investigate the expression and regulation of MUC1 in the bovine endometrium. MUC1 gene expression was analyzed in endometrial epithelial cells collected by the cytobrush technique using reverse transcription-quantitative polymerase chain reaction. MUC1 protein expression was evaluated by immunohistochemical analysis of endometrial samples collected from slaughtered cows. We used an in vitro cell culture model to study the regulation of MUC1 expression by treating cells with sex steroidal hormones or co-culturing cells with a blastocyst. The results revealed that MUC1 was expressed and localized to the apical surface of luminal epithelial cells in the bovine endometrium. MUC1 expression disappeared during the luteal phase of the estrous cycle and during pregnancy. 17β-estradiol induced MUC1 expression, whereas progesterone inhibited its increase and co-culturing with blastocysts did not affect the expression. A long postpartum interval is a known risk factor for reduced fertility, and MUC1 expression was higher in this compromised condition. Our results demonstrated the MUC1 regulation by steroid hormones in bovine endometrium for embryo implantation, and we observed a negative correlation between MUC1 expression and fertility.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Placenta previa, placenta accreta, and vasa previa.

          Placenta previa, placenta accreta, and vasa previa are important causes of bleeding in the second half of pregnancy and in labor. Risk factors for placenta previa include prior cesarean delivery, pregnancy termination, intrauterine surgery, smoking, multifetal gestation, increasing parity, and maternal age. The diagnostic modality of choice for placenta previa is transvaginal ultrasonography, and women with a complete placenta previa should be delivered by cesarean. Small studies suggest that, when the placenta to cervical os distance is greater than 2 cm, women may safely have a vaginal delivery. Regional anesthesia for cesarean delivery in women with placenta previa is safe. Delivery should take place at an institution with adequate blood banking facilities. The incidence of placenta accreta is rising, primarily because of the rise in cesarean delivery rates. This condition can be associated with massive blood loss at delivery. Prenatal diagnosis by imaging, followed by planning of peripartum management by a multidisciplinary team, may help reduce morbidity and mortality. Women known to have placenta accreta should be delivered by cesarean, and no attempt should be made to separate the placenta at the time of delivery. The majority of women with significant degrees of placenta accreta will require a hysterectomy. Although successful conservative management has been described, there are currently insufficient data to recommend this approach to management routinely. Vasa previa carries a risk of fetal exsanguination and death when the membranes rupture. The condition can be diagnosed prenatally by ultrasound examination. Good outcomes depend on prenatal diagnosis and cesarean delivery before the membranes rupture.
            • Record: found
            • Abstract: not found
            • Article: not found

            Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows

              • Record: found
              • Abstract: found
              • Article: not found

              Comparative aspects of implantation.

              Uterine receptivity to implantation of blastocysts in mammals includes hatching from zona pellucida, precontact with uterine luminal (LE) and superficial glandular (sGE) epithelia and orientation of blastocyst, apposition between trophectoderm and uterine LE and sGE, adhesion of trophectoderm to uterine LE/sGE, and, in some species, limited or extensive invasion into the endometrial stroma and induction of decidualization of stromal cells. These peri-implantation events are prerequisites for pregnancy recognition signaling, implantation, and placentation required for fetal-placental growth and development through the remainder of pregnancy. Although there is a range of strategies for implantation in mammals, a common feature is the requirement for progesterone (P(4)) to downregulate expression of its receptors in uterine epithelia and P(4) prior to implantation events. P(4) then mediates its effects via growth factors expressed by stromal cells in most species; however, uterine luminal epithelium may express a growth factor in response to P(4) and/or estrogens in species with a true epitheliochorial placenta. There is also compelling evidence that uterine receptivity to implantation involves temporal and cell-specific expression of interferon (IFN)-stimulated genes that may be induced directly by an IFN or induced by P(4) and stimulated by an IFN. These genes have many roles including nutrient transport, cellular remodeling, angiogenesis and relaxation of vascular tissues, cell proliferation and migration, establishment of an antiviral state, and protection of conceptus tissues from challenges by the maternal immune cells.

                Author and article information

                Journal
                J Reprod Dev
                J Reprod Dev
                JRD
                The Journal of Reproduction and Development
                The Society for Reproduction and Development
                0916-8818
                1348-4400
                14 October 2021
                December 2021
                : 67
                : 6
                : 386-391
                Affiliations
                [1) ]Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
                [2) ]Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
                Author notes
                Correspondence: M Sakatani (e-mail: msaka@ 123456affrc.go.jp )
                Article
                2021-087
                10.1262/jrd.2021-087
                8668378
                34645736
                35f4f385-0fcd-4353-9cc2-72e0723607d1
                ©2021 Society for Reproduction and Development

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)

                History
                : 15 July 2021
                : 17 September 2021
                Categories
                Original Article

                bovine endometrium,embryonic implantation,mucin,muc1,steroid hormone

                Comments

                Comment on this article

                Related Documents Log