2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in thyroid hormones, leptin, ghrelin and, galanin following oral melatonin administration in intact and castrated dogs: a preliminary study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Melatonin regulates metabolism and metabolism related hormones in mammalians. Castration has some adverse effects on the metabolic hormones of dog. This study was conducted to determine the effects of oral melatonin administration on metabolic hormones, as well as to compare changes of these hormones after administration of melatonin in castrated and intact dogs. Twenty healthy mixed breed mature male dogs were divided randomly into four groups ( n = 5): melatonin (3 mg/10 kg(, castrated, castrated and melatonin treated, and negative control. Blood sample was collected from jugular vein weekly for 1 month.

          Results

          T3 and T4 hormones had a significant decrease within 1 month following administration of melatonin. No significant change was observed in concentration of FT3 and FT4 hormones. Leptin and ghrelin hormones also had a significant decrease in this period. Leptin and ghrelin had a more significant decrease in “non-castrated and melatonin treated” group compared to “castrated and melatonin treated” group. Galanin had a significant decrease but this neurotransmitter had no significant change in “non-castrated and melatonin treated” group in comparison to “castrated and melatonin treated” group.

          Conclusions

          It seems that daily administration of melatonin capsule in all dogs can probably decrease concentration of T3 and T4 hormones and balance other metabolic hormones following castration.

          Methods

          The dogs underwent castration, melatonin treatment and blood sampling.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Extrapineal melatonin: sources, regulation, and potential functions.

          Endogenous melatonin is synthesized from tryptophan via 5-hydroxytryptamine. It is considered an indoleamine from a biochemical point of view because the melatonin molecule contains a substituted indolic ring with an amino group. The circadian production of melatonin by the pineal gland explains its chronobiotic influence on organismal activity, including the endocrine and non-endocrine rhythms. Other functions of melatonin, including its antioxidant and anti-inflammatory properties, its genomic effects, and its capacity to modulate mitochondrial homeostasis, are linked to the redox status of cells and tissues. With the aid of specific melatonin antibodies, the presence of melatonin has been detected in multiple extrapineal tissues including the brain, retina, lens, cochlea, Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, thymus, spleen, immune system cells, carotid body, reproductive tract, and endothelial cells. In most of these tissues, the melatonin-synthesizing enzymes have been identified. Melatonin is present in essentially all biological fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk. In several of these fluids, melatonin concentrations exceed those in the blood. The importance of the continual availability of melatonin at the cellular level is important for its physiological regulation of cell homeostasis, and may be relevant to its therapeutic applications. Because of this, it is essential to compile information related to its peripheral production and regulation of this ubiquitously acting indoleamine. Thus, this review emphasizes the presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Melatonin, energy metabolism, and obesity: a review.

            Melatonin is an old and ubiquitous molecule in nature showing multiple mechanisms of action and functions in practically every living organism. In mammals, pineal melatonin functions as a hormone and a chronobiotic, playing a major role in the regulation of the circadian temporal internal order. The anti-obesogen and the weight-reducing effects of melatonin depend on several mechanisms and actions. Experimental evidence demonstrates that melatonin is necessary for the proper synthesis, secretion, and action of insulin. Melatonin acts by regulating GLUT4 expression and/or triggering, via its G-protein-coupled membrane receptors, the phosphorylation of the insulin receptor and its intracellular substrates mobilizing the insulin-signaling pathway. Melatonin is a powerful chronobiotic being responsible, in part, by the daily distribution of metabolic processes so that the activity/feeding phase of the day is associated with high insulin sensitivity, and the rest/fasting is synchronized to the insulin-resistant metabolic phase of the day. Furthermore, melatonin is responsible for the establishment of an adequate energy balance mainly by regulating energy flow to and from the stores and directly regulating the energy expenditure through the activation of brown adipose tissue and participating in the browning process of white adipose tissue. The reduction in melatonin production, as during aging, shift-work or illuminated environments during the night, induces insulin resistance, glucose intolerance, sleep disturbance, and metabolic circadian disorganization characterizing a state of chronodisruption leading to obesity. The available evidence supports the suggestion that melatonin replacement therapy might contribute to restore a more healthy state of the organism. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melatonin and reproduction revisited.

              This brief review summarizes new findings related to the reported beneficial effects of melatonin on reproductive physiology beyond its now well-known role in determining the sexual status in both long-day and short-day seasonally breeding mammals. Of particular note are those reproductive processes that have been shown to benefit from the ability of melatonin to function in the reduction of oxidative stress. In the few species that have been tested, brightly colored secondary sexual characteristics that serve as a sexual attractant reportedly are enhanced by melatonin administration. This is of potential importance inasmuch as the brightness of ornamental pigmentation is also associated with animals that are of the highest genetic quality. Free radical damage is commonplace during pregnancy and has negative effects on the mother, placenta, and fetus. Because of its ability to readily pass through the placenta, melatonin easily protects the fetus from oxidative damage, as well as the maternal tissues and placenta. Examples of conditions in which oxidative and nitrosative stress can be extensive during pregnancy include preeclampsia and damage resulting from anoxia or hypoxia that is followed by reflow of oxygenated blood into the tissue. Given the uncommonly low toxicity of melatonin, clinical trials are warranted to document the protection by melatonin against pathophysiological states of the reproductive system in which free radical damage is known to occur. Finally, the beneficial effects of melatonin in improving the outcomes of in vitro fertilization and embryo transfer should be further tested and exploited. The information in this article has applicability to human and veterinary medicine.
                Bookmark

                Author and article information

                Contributors
                pegth@yahoo.com
                mogheiseh@yahoo.com
                a3shojaee@yahoo.com
                nazifi@shirazu.ac.ir
                salavati_sina@yahoo.com
                farzan.13@yahoo.com
                Journal
                BMC Vet Res
                BMC Vet. Res
                BMC Veterinary Research
                BioMed Central (London )
                1746-6148
                14 May 2019
                14 May 2019
                2019
                : 15
                : 145
                Affiliations
                ISNI 0000 0001 0745 1259, GRID grid.412573.6, Department of Clinical Sciences, School of Veterinary Medicine, , Shiraz University, ; P.O.Box 71441-69155, Shiraz, Fars Iran
                Author information
                http://orcid.org/0000-0002-3136-2288
                Article
                1894
                10.1186/s12917-019-1894-9
                6515663
                31088464
                35fe3fd1-b985-4e45-8526-d0d8dbd67549
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 August 2018
                : 1 May 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100009587, School of Veterinary Science, Shiraz University;
                Award ID: 95GCU1M154630
                Award ID: 71-GR-VT-5
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Veterinary medicine
                castration,dog,galanin,ghrelin,leptin,melatonin,thyroid hormones
                Veterinary medicine
                castration, dog, galanin, ghrelin, leptin, melatonin, thyroid hormones

                Comments

                Comment on this article