Blog
About

21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Molecular Epidemiological and Genetic Diversity Study of Tuberculosis in Ibadan, Nnewi and Abuja, Nigeria

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Nigeria has the tenth highest burden of tuberculosis (TB) among the 22 TB high-burden countries in the world. This study describes the biodiversity and epidemiology of drug-susceptible and drug-resistant TB in Ibadan, Nnewi and Abuja, using 409 DNAs extracted from culture positive TB isolates.

          Methodology/Principal Findings

          DNAs extracted from clinical isolates of Mycobacterium tuberculosis complex were studied by spoligotyping and 24 VNTR typing. The Cameroon clade (CAM) was predominant followed by the M. africanum (West African 1) and T (mainly T2) clades. By using a smooth definition of clusters, 32 likely epi-linked clusters related to the Cameroon genotype family and 15 likely epi-linked clusters related to other “modern” genotypes were detected. Eight clusters concerned M. africanum West African 1. The recent transmission rate of TB was 38%. This large study shows that the recent transmission of TB in Nigeria is high, without major regional differences, with MDR-TB clusters. Improvement in the TB control programme is imperative to address the TB control problem in Nigeria.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology.

          Widespread use of DNA restriction fragment length polymorphism (RFLP) to differentiate strains of Mycobacterium tuberculosis to monitor the transmission of tuberculosis has been hampered by the need to culture this slow-growing organism and by the level of technical sophistication needed for RFLP typing. We have developed a simple method which allows simultaneous detection and typing of M. tuberculosis in clinical specimens and reduces the time between suspicion of the disease and typing from 1 or several months to 1 or 3 days. The method is based on polymorphism of the chromosomal DR locus, which contains a variable number of short direct repeats interspersed with nonrepetitive spacers. The method is referred to as spacer oligotyping or "spoligotyping" because it is based on strain-dependent hybridization patterns of in vitro-amplified DNA with multiple spacer oligonucleotides. Most of the clinical isolates tested showed unique hybridization patterns, whereas outbreak strains shared the same spoligotype. The types obtained from direct examination of clinical samples were identical to those obtained by using DNA from cultured M. tuberculosis. This novel preliminary study shows that the novel method may be a useful tool for rapid disclosure of linked outbreak cases in a community, in hospitals, or in other institutions and for monitoring of transmission of multidrug-resistant M. tuberculosis. Unexpectedly, spoligotyping was found to differentiate M. bovis from M. tuberculosis, a distinction which is often difficult to make by traditional methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis.

            Molecular typing based on 12 loci containing variable numbers of tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTRs) has been adopted in combination with spoligotyping as the basis for large-scale, high-throughput genotyping of Mycobacterium tuberculosis. However, even the combination of these two methods is still less discriminatory than IS6110 fingerprinting. Here, we define an optimized set of MIRU-VNTR loci with a significantly higher discriminatory power. The resolution and the stability/robustness of 29 loci were analyzed, using a total of 824 tubercle bacillus isolates, including representatives of the main lineages identified worldwide so far. Five loci were excluded for lack of robustness and/or stability in serial isolates or isolates from epidemiologically linked patients. The use of the 24 remaining loci increased the number of types by 40%--and by 23% in combination with spoligotyping--among isolates from cosmopolitan origins, compared to those obtained with the original set of 12 loci. Consequently, the clustering rate was decreased by fourfold--by threefold in combination with spoligotyping--under the same conditions. A discriminatory subset of 15 loci with the highest evolutionary rates was then defined that concentrated 96% of the total resolution obtained with the full 24-locus set. Its predictive value for evaluating M. tuberculosis transmission was found to be equal to that of IS6110 restriction fragment length polymorphism typing, as shown in a companion population-based study. This 15-locus system is therefore proposed as the new standard for routine epidemiological discrimination of M. tuberculosis isolates and the 24-locus system as a high-resolution tool for phylogenetic studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-genome sequencing and social-network analysis of a tuberculosis outbreak.

              An outbreak of tuberculosis occurred over a 3-year period in a medium-size community in British Columbia, Canada. The results of mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) genotyping suggested the outbreak was clonal. Traditional contact tracing did not identify a source. We used whole-genome sequencing and social-network analysis in an effort to describe the outbreak dynamics at a higher resolution. We sequenced the complete genomes of 32 Mycobacterium tuberculosis outbreak isolates and 4 historical isolates (from the same region but sampled before the outbreak) with matching genotypes, using short-read sequencing. Epidemiologic and genomic data were overlaid on a social network constructed by means of interviews with patients to determine the origins and transmission dynamics of the outbreak. Whole-genome data revealed two genetically distinct lineages of M. tuberculosis with identical MIRU-VNTR genotypes, suggesting two concomitant outbreaks. Integration of social-network and phylogenetic analyses revealed several transmission events, including those involving "superspreaders." Both lineages descended from a common ancestor and had been detected in the community before the outbreak, suggesting a social, rather than genetic, trigger. Further epidemiologic investigation revealed that the onset of the outbreak coincided with a recorded increase in crack cocaine use in the community. Through integration of large-scale bacterial whole-genome sequencing and social-network analysis, we show that a socioenvironmental factor--most likely increased crack cocaine use--triggered the simultaneous expansion of two extant lineages of M. tuberculosis that was sustained by key members of a high-risk social network. Genotyping and contact tracing alone did not capture the true dynamics of the outbreak. (Funded by Genome British Columbia and others.).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                18 June 2012
                : 7
                : 6
                Affiliations
                [1 ]Zankli Medical Centre, Abuja, Nigeria
                [2 ]Institut de Génétique et Microbiologie UMR8621, CNRS-Université Paris-Sud, Orsay, France
                [3 ]National Tuberculosis and Leprosy Control Programme, Abuja, Nigeria
                [4 ]Nnamdi Azikiwe Teaching Hospital, Nnewi, Nigeria
                [5 ]University College Hospital, Ibadan, Nigeria
                [6 ]Tuberculosis Laboratory Consultant, Les Abymes, Guadeloupe, France
                [7 ]Liverpool School of Tropical Medicine, Liverpool, United Kingdom
                St. Petersburg Pasteur Institute, Russian Federation
                Author notes

                Conceived and designed the experiments: GR CS MKG JZ. Performed the experiments: JZ MKG SLM FM KSG NE. Analyzed the data: JZ MKG GR CS. Contributed reagents/materials/analysis tools: LL STA GNU OMS. Wrote the paper: CS LEC LL. performed statistical analysis: GR. provided TB consultancy services: KSG.

                Article
                PONE-D-12-03416
                10.1371/journal.pone.0038409
                3377642
                22723859
                Lawson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Genetics
                Molecular Genetics
                Medicine
                Diagnostic Medicine
                Pathology
                Clinical Pathology
                Molecular Genetics
                Epidemiology
                Molecular Epidemiology
                Infectious Diseases
                Bacterial Diseases
                Tuberculosis
                Multi-Drug-Resistant Tuberculosis
                Public Health

                Uncategorized

                Comments

                Comment on this article