97
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The widespread use of indoor-based malaria vector control interventions has been shown to alter the behaviour of vectors in Africa. There is an increasing concern that such changes could sustain residual transmission. This study was conducted to assess vector species composition, feeding behaviour and their contribution to indoor and outdoor malaria transmission in western Kenya.

          Methods

          Anopheles mosquito collections were carried out from September 2015 to April 2016 in Ahero and Iguhu sites, western Kenya using CDC light traps (indoor and outdoor), pyrethrum spray catches (PSCs) (indoor) and pit shelters (outdoor). Species within Anopheles gambiae s.l. and Anopheles funestus s.l. were identified using polymerase chain reaction (PCR). Enzyme-linked immunosorbent assay (ELISA) was used to determine mosquito blood meal sources and sporozoite infections.

          Results

          A total of 10,864 female Anopheles mosquitoes comprising An. gambiae s.l. (71.4%), An. funestus s.l. (12.3%),  Anopheles coustani (9.2%) and Anopheles pharoensis (7.1%) were collected. The majority (61.8%) of the anopheline mosquitoes were collected outdoors. PCR result (n = 581) revealed that 98.9% An. arabiensis and 1.1% An. gambiae s.s. constituted An. gambiae s.l. in Ahero while this was 87% An. gambiae s.s. and 13% An. arabiensis in Iguhu. Of the 108 An. funestus s.l. analysed by PCR, 98.1% belonged to An. funestus s.s. and 1.9% to Anopheles leesoni. The human blood index (HBI) and bovine blood index (BBI) of An. arabiensis was 2.5 and 73.1%, respectively. Anopheles gambiae s.s. had HBI and BBI of 50 and 28%, respectively. The HBI and BBI of An. funestus was 60 and 22.3%, respectively. Forage ratio estimate revealed that An. arabiensis preferred to feed on cattle, An. gambiae s.s. showed preference for both human and cattle, while An. funestus preferred human over other hosts. In Ahero, the sporozoite rates for An. arabiensis and An. funestus were 0.16 and 1.8%, respectively, whereas in Iguhu, the sporozoite rates for An. gambiae s.s. and An. funestus were 2.3 and 2.4%, respectively. In Ahero, the estimated indoor and outdoor entomological inoculation rate (EIR) was 108.6 infective bites/person/year (79.0 from An. funestus and 29.6 from An. arabiensis) and 43.5 infective bites/person/year (27.9 from An. arabiensis and 15.6 from An. funestus), respectively. In Iguhu, the estimated indoor and outdoor EIR was 24.5 infective bites/person/year (18.8 from An. gambiae s.s. and 5.7 from An. funestus) and 5.5 infective bites/person/year (all from An. gambiae s.s.), respectively.

          Conclusion

          Anopheles gambiae s.s. showed an increasing tendency to feed on cattle. Anopheles arabiensis was highly zoophagic, whereas An. funestus showed anthropophagic behaviour. While the majority of malaria transmission occurred indoor, the magnitude of outdoor transmission was considerably high. Additional control tools that complement the existing interventions are required to control residual transmission.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction.

          A ribosomal DNA-polymerase chain reaction (PCR) method has been developed for species identification of individuals of the five most widespread members of the Anopheles gambiae complex, a group of morphologically indistinguishable sibling mosquito species that includes the major vectors of malaria in Africa. The method, which is based on species-specific nucleotide sequences in the ribosomal DNA intergenic spacers, may be used to identify both species and interspecies hybrids, regardless of life stage, using either extracted DNA or fragments of a specimen. Intact portions of a mosquito as small as an egg or the segment of one leg may be placed directly into the PCR mixture for amplification and analysis. The method uses a cocktail of five 20-base oligonucleotides to identify An. gambiae, An. arabiensis, An. quadriannnulatus, and either An. melas in western Africa or An. melas in eastern and southern Africa.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania

            Background Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) represent the front-line tools for malaria vector control globally, but are optimally effective where the majority of baseline transmission occurs indoors. In the surveyed area of rural southern Tanzania, bed net use steadily increased over the last decade, reducing malaria transmission intensity by 94%. Methods Starting before bed nets were introduced (1997), and then after two milestones of net use had been reached-75% community-wide use of untreated nets (2004) and then 47% use of ITNs (2009)-hourly biting rates of malaria vectors from the Anopheles gambiae complex and Anopheles funestus group were surveyed. Results In 1997, An. gambiae s.l. and An. funestus mosquitoes exhibited a tendency to bite humans inside houses late at night. For An. gambiae s.l., by 2009, nocturnal activity was less (p = 0.0018). At this time, the sibling species composition of the complex had shifted from predominantly An. gambiae s.s. to predominantly An. arabiensis. For An. funestus, by 2009, nocturnal activity was less (p = 0.0054) as well as the proportion biting indoors (p < 0.0001). At this time, An. funestus s.s. remained the predominant species within this group. As a consequence of these altered feeding patterns, the proportion (mean ± standard error) of human contact with mosquitoes (bites per person per night) occurring indoors dropped from 0.99 ± 0.002 in 1997 to 0.82 ± 0.008 in 2009 for the An. gambiae complex (p = 0.0143) and from 1.00 ± <0.001 to only 0.50 ± 0.048 for the An. funestus complex (p = 0.0004) over the same time period. Conclusions High usage of ITNs can dramatically alter African vector populations so that intense, predominantly indoor transmission is replaced by greatly lowered residual transmission, a greater proportion of which occurs outdoors. Regardless of the underlying mechanism, the residual, self-sustaining transmission will respond poorly to further insecticidal measures within houses. Additional vector control tools which target outdoor biting mosquitoes at the adult or immature stages are required to complement ITNs and IRS.
              • Record: found
              • Abstract: found
              • Article: not found

              A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group.

              Anopheles funestus Giles is a major malaria vector in Africa belonging to a group of species with morphologically similar characteristics. Morphological identification of members of the A. funestus group is difficult because of overlap of distinguishing characteristics in adult or immature stages as well as the necessity to rear isofemale lines to examine larval and egg characters. A rapid rDNA polymerase chain reaction (PCR) method has been developed to accurately identify five members of the A. funestus group. This PCR is based on species-specific primers in the ITS2 region on the rDNA to identify A. funestus (approximately 505bp), Anopheles vaneedeni Gillies and Coetzee (approximately 587bp), Anopheles rivulorum Leeson (approximately 411bp), Anopheles leesoni Evans (approximately 146bp), and Anopheles parensis Gillies (approximately 252bp).

                Author and article information

                Contributors
                teshedege@gmail.com
                delenasawye@yahoo.com
                zhoug@uci.edu
                mingchil@uci.edu
                etemesi2012@yahoo.com
                githeko@yahoo.com
                guiyuny@uci.edu
                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                6 November 2017
                6 November 2017
                2017
                : 16
                : 443
                Affiliations
                [1 ]ISNI 0000 0001 2034 9160, GRID grid.411903.e, Department of Medical Laboratory Sciences, College of Health Sciences, , Jimma University, ; Jimma, Ethiopia
                [2 ]ISNI 0000 0001 0155 5938, GRID grid.33058.3d, Centre for Global Health Research, , Kenya Medical Research Institute, ; Kisumu, Kenya
                [3 ]ISNI 0000 0001 2034 9160, GRID grid.411903.e, Tropical and Infectious Diseases Research Center (TIDRC), , Jimma University, ; Jimma, Ethiopia
                [4 ]ISNI 0000 0001 0668 7243, GRID grid.266093.8, Program in Public Health, College of Health Sciences, , University of California at Irvine, ; Irvine, CA 92697 USA
                [5 ]GRID grid.442486.8, School of Public Health, , Maseno University, ; Kisumu, Kenya
                Author information
                http://orcid.org/0000-0002-3518-2372
                Article
                2098
                10.1186/s12936-017-2098-z
                5674686
                29110670
                3604e9f4-3388-40c5-b223-fa8f7b6dc41c
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 July 2017
                : 28 October 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01 AI050243
                Award ID: U19 AI129326
                Award ID: D43 TW001505
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Infectious disease & Microbiology
                malaria vectors,surveillance,behavior,residual transmission,kenya

                Comments

                Comment on this article

                Related Documents Log